首页

AD联系:3171672752

12bet

时间:2020-02-26 08:02:31 作者:全讯网导航 浏览量:21070

AG永久入口【AG88.SHOP】12bet离网逆变器为什么能过载几倍离网逆变器为什么能过载几倍

北极星太阳能光伏网讯:在光伏并网系统中,组件、逆变器、电网构成电气系统。阳光辐射有多大,组件转化太阳能,逆变器就发多大的功率,所以并网逆变器对交流过载没有特别要求,因为逆变器的输出功率基本不会超过组件功率。而在光伏离网系统中,组件、蓄电池、逆变器、负载构成电气系统,逆变器的输出功率,是由负载决定的,有些感性负载,如空调、水泵等,里面的电动机,启动功率是额定功率的3-5倍,所以离网逆变器对过载有特别要求。

从上图看出,采用高频隔离技术的离网逆变器,峰值功率可以达到额定功率的两倍;采用工频隔离技术的离网逆变器,峰值功率可以达到额定功率的三倍。那么,一台3kW的高频离网逆变器,可以带动一台1P的空调(启动功率约5.5kVA),一台12kW的工频离网逆变器,可以带动一台6P的空调(启动功率约33kVA)。逆变器给负载提供启动能量,一部分来自于蓄电池或者光伏组件,超出的部分也是靠逆变器自己(内部的储能元件—电容和电感)来提供。

高频 SPF3000-5000TL HV 工频 SPF 4000-12000T HVM

电容和电感都是一种储能元件,不同的是电容是以电场的形式储存电能,电容的容量越大,储存的电量越多。而电感则是以磁场的形式存储能量,电感器磁芯的磁导率越大,电感量也越大,则能够储存的能量也越多。

电容的原理从其结构便可以看出,如上图,两边各有一块金属板引出两个电极,中间由绝缘物质隔开,在电容两端未施加外部电场的情况下,两个极板上所带的正负电荷处于一种平衡状态。

如上图,当在电容两端施加外电场时,一端极板上开始聚集正电荷,另一端极板则聚集负电荷,随着电容两端的电压不断升高至电源电压,电容充电停止,此时就算断开外电路,电容上的能量也不会消失,原因是正负电荷具有“同性相斥,异性相吸”的特性,两端的电荷相吸引就形成了储存能量的作用。

工频隔离变压器,是指频率为工频(50HZ)的变压器,变压器初级和次级都有电感,与逆变器里面的滤波电感,都可以储存一定的电能。而当电感流过电流时,由于电流会存在磁场,当电流的磁场经过磁芯时,电流磁场会打破“磁畴”的平衡状态,使“磁畴”同时趋向于外部磁场的方向,进而导致磁芯此时会对外表现出磁场。而这个磁芯磁场从无到有的过程,其实就是电感储存磁场的过程。

电感是由漆包线绕制在绝缘骨架或磁芯上形成的元器件。当线圈中有电流通过时,会在周围产生一定的磁场,而当通过的电流含有交流成分时,产生的磁场会不断变化,根据电磁感应原理,变化的磁力线又会在线圈两端产生感应电动势,但此电动势的方向和原来产生的电动势方向相反,并以此来阻碍电流的变化。

由此可以看出,电感的主要作用是阻碍电流的变化。电流增加时,它会阻碍电流的增加,同时通过磁场储存一部分能量;而当电流减小时,它又会阻碍电路中电流的减小,并释放出储存的能量来维持电流。正因为电感有储存能量的特性,所以才有滤波和延迟等功能。

总结:

光伏离网系统,输出功率是由负载决定。当有电动机等感性负载启动时,短时间需要非常大的电流,而这些能量,光伏无法提供,蓄电池也不能提供,锂电池短时间如果过载输出,会引起爆炸。但是,逆变器里的电容、电感、变压器可以储能电量,还可短时间放大几倍输出而不会损坏。

北极星太阳能光伏网讯:在光伏并网系统中,组件、逆变器、电网构成电气系统。阳光辐射有多大,组件转化太阳能,逆变器就发多大的功率,所以并网逆变器对交流过载没有特别要求,因为逆变器的输出功率基本不会超过组件功率。而在光伏离网系统中,组件、蓄电池、逆变器、负载构成电气系统,逆变器的输出功率,是由负载决定的,有些感性负载,如空调、水泵等,里面的电动机,启动功率是额定功率的3-5倍,所以离网逆变器对过载有特别要求。

从上图看出,采用高频隔离技术的离网逆变器,峰值功率可以达到额定功率的两倍;采用工频隔离技术的离网逆变器,峰值功率可以达到额定功率的三倍。那么,一台3kW的高频离网逆变器,可以带动一台1P的空调(启动功率约5.5kVA),一台12kW的工频离网逆变器,可以带动一台6P的空调(启动功率约33kVA)。逆变器给负载提供启动能量,一部分来自于蓄电池或者光伏组件,超出的部分也是靠逆变器自己(内部的储能元件—电容和电感)来提供。

高频 SPF3000-5000TL HV 工频 SPF 4000-12000T HVM

电容和电感都是一种储能元件,不同的是电容是以电场的形式储存电能,电容的容量越大,储存的电量越多。而电感则是以磁场的形式存储能量,电感器磁芯的磁导率越大,电感量也越大,则能够储存的能量也越多。

电容的原理从其结构便可以看出,如上图,两边各有一块金属板引出两个电极,中间由绝缘物质隔开,在电容两端未施加外部电场的情况下,两个极板上所带的正负电荷处于一种平衡状态。

如上图,当在电容两端施加外电场时,一端极板上开始聚集正电荷,另一端极板则聚集负电荷,随着电容两端的电压不断升高至电源电压,电容充电停止,此时就算断开外电路,电容上的能量也不会消失,原因是正负电荷具有“同性相斥,异性相吸”的特性,两端的电荷相吸引就形成了储存能量的作用。

工频隔离变压器,是指频率为工频(50HZ)的变压器,变压器初级和次级都有电感,与逆变器里面的滤波电感,都可以储存一定的电能。而当电感流过电流时,由于电流会存在磁场,当电流的磁场经过磁芯时,电流磁场会打破“磁畴”的平衡状态,使“磁畴”同时趋向于外部磁场的方向,进而导致磁芯此时会对外表现出磁场。而这个磁芯磁场从无到有的过程,其实就是电感储存磁场的过程。

电感是由漆包线绕制在绝缘骨架或磁芯上形成的元器件。当线圈中有电流通过时,会在周围产生一定的磁场,而当通过的电流含有交流成分时,产生的磁场会不断变化,根据电磁感应原理,变化的磁力线又会在线圈两端产生感应电动势,但此电动势的方向和原来产生的电动势方向相反,并以此来阻碍电流的变化。

由此可以看出,电感的主要作用是阻碍电流的变化。电流增加时,它会阻碍电流的增加,同时通过磁场储存一部分能量;而当电流减小时,它又会阻碍电路中电流的减小,并释放出储存的能量来维持电流。正因为电感有储存能量的特性,所以才有滤波和延迟等功能。

总结:

光伏离网系统,输出功率是由负载决定。当有电动机等感性负载启动时,短时间需要非常大的电流,而这些能量,光伏无法提供,蓄电池也不能提供,锂电池短时间如果过载输出,会引起爆炸。但是,逆变器里的电容、电感、变压器可以储能电量,还可短时间放大几倍输出而不会损坏。

北极星太阳能光伏网讯:在光伏并网系统中,组件、逆变器、电网构成电气系统。阳光辐射有多大,组件转化太阳能,逆变器就发多大的功率,所以并网逆变器对交流过载没有特别要求,因为逆变器的输出功率基本不会超过组件功率。而在光伏离网系统中,组件、蓄电池、逆变器、负载构成电气系统,逆变器的输出功率,是由负载决定的,有些感性负载,如空调、水泵等,里面的电动机,启动功率是额定功率的3-5倍,所以离网逆变器对过载有特别要求。

从上图看出,采用高频隔离技术的离网逆变器,峰值功率可以达到额定功率的两倍;采用工频隔离技术的离网逆变器,峰值功率可以达到额定功率的三倍。那么,一台3kW的高频离网逆变器,可以带动一台1P的空调(启动功率约5.5kVA),一台12kW的工频离网逆变器,可以带动一台6P的空调(启动功率约33kVA)。逆变器给负载提供启动能量,一部分来自于蓄电池或者光伏组件,超出的部分也是靠逆变器自己(内部的储能元件—电容和电感)来提供。

高频 SPF3000-5000TL HV 工频 SPF 4000-12000T HVM

电容和电感都是一种储能元件,不同的是电容是以电场的形式储存电能,电容的容量越大,储存的电量越多。而电感则是以磁场的形式存储能量,电感器磁芯的磁导率越大,电感量也越大,则能够储存的能量也越多。

电容的原理从其结构便可以看出,如上图,两边各有一块金属板引出两个电极,中间由绝缘物质隔开,在电容两端未施加外部电场的情况下,两个极板上所带的正负电荷处于一种平衡状态。

如上图,当在电容两端施加外电场时,一端极板上开始聚集正电荷,另一端极板则聚集负电荷,随着电容两端的电压不断升高至电源电压,电容充电停止,此时就算断开外电路,电容上的能量也不会消失,原因是正负电荷具有“同性相斥,异性相吸”的特性,两端的电荷相吸引就形成了储存能量的作用。

工频隔离变压器,是指频率为工频(50HZ)的变压器,变压器初级和次级都有电感,与逆变器里面的滤波电感,都可以储存一定的电能。而当电感流过电流时,由于电流会存在磁场,当电流的磁场经过磁芯时,电流磁场会打破“磁畴”的平衡状态,使“磁畴”同时趋向于外部磁场的方向,进而导致磁芯此时会对外表现出磁场。而这个磁芯磁场从无到有的过程,其实就是电感储存磁场的过程。

电感是由漆包线绕制在绝缘骨架或磁芯上形成的元器件。当线圈中有电流通过时,会在周围产生一定的磁场,而当通过的电流含有交流成分时,产生的磁场会不断变化,根据电磁感应原理,变化的磁力线又会在线圈两端产生感应电动势,但此电动势的方向和原来产生的电动势方向相反,并以此来阻碍电流的变化。

由此可以看出,电感的主要作用是阻碍电流的变化。电流增加时,它会阻碍电流的增加,同时通过磁场储存一部分能量;而当电流减小时,它又会阻碍电路中电流的减小,并释放出储存的能量来维持电流。正因为电感有储存能量的特性,所以才有滤波和延迟等功能。

总结:

光伏离网系统,输出功率是由负载决定。当有电动机等感性负载启动时,短时间需要非常大的电流,而这些能量,光伏无法提供,蓄电池也不能提供,锂电池短时间如果过载输出,会引起爆炸。但是,逆变器里的电容、电感、变压器可以储能电量,还可短时间放大几倍输出而不会损坏。

离网逆变器为什么能过载几倍

北极星太阳能光伏网讯:在光伏并网系统中,组件、逆变器、电网构成电气系统。阳光辐射有多大,组件转化太阳能,逆变器就发多大的功率,所以并网逆变器对交流过载没有特别要求,因为逆变器的输出功率基本不会超过组件功率。而在光伏离网系统中,组件、蓄电池、逆变器、负载构成电气系统,逆变器的输出功率,是由负载决定的,有些感性负载,如空调、水泵等,里面的电动机,启动功率是额定功率的3-5倍,所以离网逆变器对过载有特别要求。

从上图看出,采用高频隔离技术的离网逆变器,峰值功率可以达到额定功率的两倍;采用工频隔离技术的离网逆变器,峰值功率可以达到额定功率的三倍。那么,一台3kW的高频离网逆变器,可以带动一台1P的空调(启动功率约5.5kVA),一台12kW的工频离网逆变器,可以带动一台6P的空调(启动功率约33kVA)。逆变器给负载提供启动能量,一部分来自于蓄电池或者光伏组件,超出的部分也是靠逆变器自己(内部的储能元件—电容和电感)来提供。

高频 SPF3000-5000TL HV 工频 SPF 4000-12000T HVM

电容和电感都是一种储能元件,不同的是电容是以电场的形式储存电能,电容的容量越大,储存的电量越多。而电感则是以磁场的形式存储能量,电感器磁芯的磁导率越大,电感量也越大,则能够储存的能量也越多。

电容的原理从其结构便可以看出,如上图,两边各有一块金属板引出两个电极,中间由绝缘物质隔开,在电容两端未施加外部电场的情况下,两个极板上所带的正负电荷处于一种平衡状态。

如上图,当在电容两端施加外电场时,一端极板上开始聚集正电荷,另一端极板则聚集负电荷,随着电容两端的电压不断升高至电源电压,电容充电停止,此时就算断开外电路,电容上的能量也不会消失,原因是正负电荷具有“同性相斥,异性相吸”的特性,两端的电荷相吸引就形成了储存能量的作用。

工频隔离变压器,是指频率为工频(50HZ)的变压器,变压器初级和次级都有电感,与逆变器里面的滤波电感,都可以储存一定的电能。而当电感流过电流时,由于电流会存在磁场,当电流的磁场经过磁芯时,电流磁场会打破“磁畴”的平衡状态,使“磁畴”同时趋向于外部磁场的方向,进而导致磁芯此时会对外表现出磁场。而这个磁芯磁场从无到有的过程,其实就是电感储存磁场的过程。

电感是由漆包线绕制在绝缘骨架或磁芯上形成的元器件。当线圈中有电流通过时,会在周围产生一定的磁场,而当通过的电流含有交流成分时,产生的磁场会不断变化,根据电磁感应原理,变化的磁力线又会在线圈两端产生感应电动势,但此电动势的方向和原来产生的电动势方向相反,并以此来阻碍电流的变化。

由此可以看出,电感的主要作用是阻碍电流的变化。电流增加时,它会阻碍电流的增加,同时通过磁场储存一部分能量;而当电流减小时,它又会阻碍电路中电流的减小,并释放出储存的能量来维持电流。正因为电感有储存能量的特性,所以才有滤波和延迟等功能。

总结:

光伏离网系统,输出功率是由负载决定。当有电动机等感性负载启动时,短时间需要非常大的电流,而这些能量,光伏无法提供,蓄电池也不能提供,锂电池短时间如果过载输出,会引起爆炸。但是,逆变器里的电容、电感、变压器可以储能电量,还可短时间放大几倍输出而不会损坏。

,见下图

北极星太阳能光伏网讯:在光伏并网系统中,组件、逆变器、电网构成电气系统。阳光辐射有多大,组件转化太阳能,逆变器就发多大的功率,所以并网逆变器对交流过载没有特别要求,因为逆变器的输出功率基本不会超过组件功率。而在光伏离网系统中,组件、蓄电池、逆变器、负载构成电气系统,逆变器的输出功率,是由负载决定的,有些感性负载,如空调、水泵等,里面的电动机,启动功率是额定功率的3-5倍,所以离网逆变器对过载有特别要求。

从上图看出,采用高频隔离技术的离网逆变器,峰值功率可以达到额定功率的两倍;采用工频隔离技术的离网逆变器,峰值功率可以达到额定功率的三倍。那么,一台3kW的高频离网逆变器,可以带动一台1P的空调(启动功率约5.5kVA),一台12kW的工频离网逆变器,可以带动一台6P的空调(启动功率约33kVA)。逆变器给负载提供启动能量,一部分来自于蓄电池或者光伏组件,超出的部分也是靠逆变器自己(内部的储能元件—电容和电感)来提供。

高频 SPF3000-5000TL HV 工频 SPF 4000-12000T HVM

电容和电感都是一种储能元件,不同的是电容是以电场的形式储存电能,电容的容量越大,储存的电量越多。而电感则是以磁场的形式存储能量,电感器磁芯的磁导率越大,电感量也越大,则能够储存的能量也越多。

电容的原理从其结构便可以看出,如上图,两边各有一块金属板引出两个电极,中间由绝缘物质隔开,在电容两端未施加外部电场的情况下,两个极板上所带的正负电荷处于一种平衡状态。

如上图,当在电容两端施加外电场时,一端极板上开始聚集正电荷,另一端极板则聚集负电荷,随着电容两端的电压不断升高至电源电压,电容充电停止,此时就算断开外电路,电容上的能量也不会消失,原因是正负电荷具有“同性相斥,异性相吸”的特性,两端的电荷相吸引就形成了储存能量的作用。

工频隔离变压器,是指频率为工频(50HZ)的变压器,变压器初级和次级都有电感,与逆变器里面的滤波电感,都可以储存一定的电能。而当电感流过电流时,由于电流会存在磁场,当电流的磁场经过磁芯时,电流磁场会打破“磁畴”的平衡状态,使“磁畴”同时趋向于外部磁场的方向,进而导致磁芯此时会对外表现出磁场。而这个磁芯磁场从无到有的过程,其实就是电感储存磁场的过程。

电感是由漆包线绕制在绝缘骨架或磁芯上形成的元器件。当线圈中有电流通过时,会在周围产生一定的磁场,而当通过的电流含有交流成分时,产生的磁场会不断变化,根据电磁感应原理,变化的磁力线又会在线圈两端产生感应电动势,但此电动势的方向和原来产生的电动势方向相反,并以此来阻碍电流的变化。

由此可以看出,电感的主要作用是阻碍电流的变化。电流增加时,它会阻碍电流的增加,同时通过磁场储存一部分能量;而当电流减小时,它又会阻碍电路中电流的减小,并释放出储存的能量来维持电流。正因为电感有储存能量的特性,所以才有滤波和延迟等功能。

总结:

光伏离网系统,输出功率是由负载决定。当有电动机等感性负载启动时,短时间需要非常大的电流,而这些能量,光伏无法提供,蓄电池也不能提供,锂电池短时间如果过载输出,会引起爆炸。但是,逆变器里的电容、电感、变压器可以储能电量,还可短时间放大几倍输出而不会损坏。

北极星太阳能光伏网讯:在光伏并网系统中,组件、逆变器、电网构成电气系统。阳光辐射有多大,组件转化太阳能,逆变器就发多大的功率,所以并网逆变器对交流过载没有特别要求,因为逆变器的输出功率基本不会超过组件功率。而在光伏离网系统中,组件、蓄电池、逆变器、负载构成电气系统,逆变器的输出功率,是由负载决定的,有些感性负载,如空调、水泵等,里面的电动机,启动功率是额定功率的3-5倍,所以离网逆变器对过载有特别要求。

从上图看出,采用高频隔离技术的离网逆变器,峰值功率可以达到额定功率的两倍;采用工频隔离技术的离网逆变器,峰值功率可以达到额定功率的三倍。那么,一台3kW的高频离网逆变器,可以带动一台1P的空调(启动功率约5.5kVA),一台12kW的工频离网逆变器,可以带动一台6P的空调(启动功率约33kVA)。逆变器给负载提供启动能量,一部分来自于蓄电池或者光伏组件,超出的部分也是靠逆变器自己(内部的储能元件—电容和电感)来提供。

高频 SPF3000-5000TL HV 工频 SPF 4000-12000T HVM

电容和电感都是一种储能元件,不同的是电容是以电场的形式储存电能,电容的容量越大,储存的电量越多。而电感则是以磁场的形式存储能量,电感器磁芯的磁导率越大,电感量也越大,则能够储存的能量也越多。

电容的原理从其结构便可以看出,如上图,两边各有一块金属板引出两个电极,中间由绝缘物质隔开,在电容两端未施加外部电场的情况下,两个极板上所带的正负电荷处于一种平衡状态。

如上图,当在电容两端施加外电场时,一端极板上开始聚集正电荷,另一端极板则聚集负电荷,随着电容两端的电压不断升高至电源电压,电容充电停止,此时就算断开外电路,电容上的能量也不会消失,原因是正负电荷具有“同性相斥,异性相吸”的特性,两端的电荷相吸引就形成了储存能量的作用。

工频隔离变压器,是指频率为工频(50HZ)的变压器,变压器初级和次级都有电感,与逆变器里面的滤波电感,都可以储存一定的电能。而当电感流过电流时,由于电流会存在磁场,当电流的磁场经过磁芯时,电流磁场会打破“磁畴”的平衡状态,使“磁畴”同时趋向于外部磁场的方向,进而导致磁芯此时会对外表现出磁场。而这个磁芯磁场从无到有的过程,其实就是电感储存磁场的过程。

电感是由漆包线绕制在绝缘骨架或磁芯上形成的元器件。当线圈中有电流通过时,会在周围产生一定的磁场,而当通过的电流含有交流成分时,产生的磁场会不断变化,根据电磁感应原理,变化的磁力线又会在线圈两端产生感应电动势,但此电动势的方向和原来产生的电动势方向相反,并以此来阻碍电流的变化。

由此可以看出,电感的主要作用是阻碍电流的变化。电流增加时,它会阻碍电流的增加,同时通过磁场储存一部分能量;而当电流减小时,它又会阻碍电路中电流的减小,并释放出储存的能量来维持电流。正因为电感有储存能量的特性,所以才有滤波和延迟等功能。

总结:

光伏离网系统,输出功率是由负载决定。当有电动机等感性负载启动时,短时间需要非常大的电流,而这些能量,光伏无法提供,蓄电池也不能提供,锂电池短时间如果过载输出,会引起爆炸。但是,逆变器里的电容、电感、变压器可以储能电量,还可短时间放大几倍输出而不会损坏。

北极星太阳能光伏网讯:在光伏并网系统中,组件、逆变器、电网构成电气系统。阳光辐射有多大,组件转化太阳能,逆变器就发多大的功率,所以并网逆变器对交流过载没有特别要求,因为逆变器的输出功率基本不会超过组件功率。而在光伏离网系统中,组件、蓄电池、逆变器、负载构成电气系统,逆变器的输出功率,是由负载决定的,有些感性负载,如空调、水泵等,里面的电动机,启动功率是额定功率的3-5倍,所以离网逆变器对过载有特别要求。

从上图看出,采用高频隔离技术的离网逆变器,峰值功率可以达到额定功率的两倍;采用工频隔离技术的离网逆变器,峰值功率可以达到额定功率的三倍。那么,一台3kW的高频离网逆变器,可以带动一台1P的空调(启动功率约5.5kVA),一台12kW的工频离网逆变器,可以带动一台6P的空调(启动功率约33kVA)。逆变器给负载提供启动能量,一部分来自于蓄电池或者光伏组件,超出的部分也是靠逆变器自己(内部的储能元件—电容和电感)来提供。

高频 SPF3000-5000TL HV 工频 SPF 4000-12000T HVM

电容和电感都是一种储能元件,不同的是电容是以电场的形式储存电能,电容的容量越大,储存的电量越多。而电感则是以磁场的形式存储能量,电感器磁芯的磁导率越大,电感量也越大,则能够储存的能量也越多。

电容的原理从其结构便可以看出,如上图,两边各有一块金属板引出两个电极,中间由绝缘物质隔开,在电容两端未施加外部电场的情况下,两个极板上所带的正负电荷处于一种平衡状态。

如上图,当在电容两端施加外电场时,一端极板上开始聚集正电荷,另一端极板则聚集负电荷,随着电容两端的电压不断升高至电源电压,电容充电停止,此时就算断开外电路,电容上的能量也不会消失,原因是正负电荷具有“同性相斥,异性相吸”的特性,两端的电荷相吸引就形成了储存能量的作用。

工频隔离变压器,是指频率为工频(50HZ)的变压器,变压器初级和次级都有电感,与逆变器里面的滤波电感,都可以储存一定的电能。而当电感流过电流时,由于电流会存在磁场,当电流的磁场经过磁芯时,电流磁场会打破“磁畴”的平衡状态,使“磁畴”同时趋向于外部磁场的方向,进而导致磁芯此时会对外表现出磁场。而这个磁芯磁场从无到有的过程,其实就是电感储存磁场的过程。

电感是由漆包线绕制在绝缘骨架或磁芯上形成的元器件。当线圈中有电流通过时,会在周围产生一定的磁场,而当通过的电流含有交流成分时,产生的磁场会不断变化,根据电磁感应原理,变化的磁力线又会在线圈两端产生感应电动势,但此电动势的方向和原来产生的电动势方向相反,并以此来阻碍电流的变化。

由此可以看出,电感的主要作用是阻碍电流的变化。电流增加时,它会阻碍电流的增加,同时通过磁场储存一部分能量;而当电流减小时,它又会阻碍电路中电流的减小,并释放出储存的能量来维持电流。正因为电感有储存能量的特性,所以才有滤波和延迟等功能。

总结:

光伏离网系统,输出功率是由负载决定。当有电动机等感性负载启动时,短时间需要非常大的电流,而这些能量,光伏无法提供,蓄电池也不能提供,锂电池短时间如果过载输出,会引起爆炸。但是,逆变器里的电容、电感、变压器可以储能电量,还可短时间放大几倍输出而不会损坏。

,见下图

北极星太阳能光伏网讯:在光伏并网系统中,组件、逆变器、电网构成电气系统。阳光辐射有多大,组件转化太阳能,逆变器就发多大的功率,所以并网逆变器对交流过载没有特别要求,因为逆变器的输出功率基本不会超过组件功率。而在光伏离网系统中,组件、蓄电池、逆变器、负载构成电气系统,逆变器的输出功率,是由负载决定的,有些感性负载,如空调、水泵等,里面的电动机,启动功率是额定功率的3-5倍,所以离网逆变器对过载有特别要求。

从上图看出,采用高频隔离技术的离网逆变器,峰值功率可以达到额定功率的两倍;采用工频隔离技术的离网逆变器,峰值功率可以达到额定功率的三倍。那么,一台3kW的高频离网逆变器,可以带动一台1P的空调(启动功率约5.5kVA),一台12kW的工频离网逆变器,可以带动一台6P的空调(启动功率约33kVA)。逆变器给负载提供启动能量,一部分来自于蓄电池或者光伏组件,超出的部分也是靠逆变器自己(内部的储能元件—电容和电感)来提供。

高频 SPF3000-5000TL HV 工频 SPF 4000-12000T HVM

电容和电感都是一种储能元件,不同的是电容是以电场的形式储存电能,电容的容量越大,储存的电量越多。而电感则是以磁场的形式存储能量,电感器磁芯的磁导率越大,电感量也越大,则能够储存的能量也越多。

电容的原理从其结构便可以看出,如上图,两边各有一块金属板引出两个电极,中间由绝缘物质隔开,在电容两端未施加外部电场的情况下,两个极板上所带的正负电荷处于一种平衡状态。

如上图,当在电容两端施加外电场时,一端极板上开始聚集正电荷,另一端极板则聚集负电荷,随着电容两端的电压不断升高至电源电压,电容充电停止,此时就算断开外电路,电容上的能量也不会消失,原因是正负电荷具有“同性相斥,异性相吸”的特性,两端的电荷相吸引就形成了储存能量的作用。

工频隔离变压器,是指频率为工频(50HZ)的变压器,变压器初级和次级都有电感,与逆变器里面的滤波电感,都可以储存一定的电能。而当电感流过电流时,由于电流会存在磁场,当电流的磁场经过磁芯时,电流磁场会打破“磁畴”的平衡状态,使“磁畴”同时趋向于外部磁场的方向,进而导致磁芯此时会对外表现出磁场。而这个磁芯磁场从无到有的过程,其实就是电感储存磁场的过程。

电感是由漆包线绕制在绝缘骨架或磁芯上形成的元器件。当线圈中有电流通过时,会在周围产生一定的磁场,而当通过的电流含有交流成分时,产生的磁场会不断变化,根据电磁感应原理,变化的磁力线又会在线圈两端产生感应电动势,但此电动势的方向和原来产生的电动势方向相反,并以此来阻碍电流的变化。

由此可以看出,电感的主要作用是阻碍电流的变化。电流增加时,它会阻碍电流的增加,同时通过磁场储存一部分能量;而当电流减小时,它又会阻碍电路中电流的减小,并释放出储存的能量来维持电流。正因为电感有储存能量的特性,所以才有滤波和延迟等功能。

总结:

光伏离网系统,输出功率是由负载决定。当有电动机等感性负载启动时,短时间需要非常大的电流,而这些能量,光伏无法提供,蓄电池也不能提供,锂电池短时间如果过载输出,会引起爆炸。但是,逆变器里的电容、电感、变压器可以储能电量,还可短时间放大几倍输出而不会损坏。

离网逆变器为什么能过载几倍

北极星太阳能光伏网讯:在光伏并网系统中,组件、逆变器、电网构成电气系统。阳光辐射有多大,组件转化太阳能,逆变器就发多大的功率,所以并网逆变器对交流过载没有特别要求,因为逆变器的输出功率基本不会超过组件功率。而在光伏离网系统中,组件、蓄电池、逆变器、负载构成电气系统,逆变器的输出功率,是由负载决定的,有些感性负载,如空调、水泵等,里面的电动机,启动功率是额定功率的3-5倍,所以离网逆变器对过载有特别要求。

从上图看出,采用高频隔离技术的离网逆变器,峰值功率可以达到额定功率的两倍;采用工频隔离技术的离网逆变器,峰值功率可以达到额定功率的三倍。那么,一台3kW的高频离网逆变器,可以带动一台1P的空调(启动功率约5.5kVA),一台12kW的工频离网逆变器,可以带动一台6P的空调(启动功率约33kVA)。逆变器给负载提供启动能量,一部分来自于蓄电池或者光伏组件,超出的部分也是靠逆变器自己(内部的储能元件—电容和电感)来提供。

高频 SPF3000-5000TL HV 工频 SPF 4000-12000T HVM

电容和电感都是一种储能元件,不同的是电容是以电场的形式储存电能,电容的容量越大,储存的电量越多。而电感则是以磁场的形式存储能量,电感器磁芯的磁导率越大,电感量也越大,则能够储存的能量也越多。

电容的原理从其结构便可以看出,如上图,两边各有一块金属板引出两个电极,中间由绝缘物质隔开,在电容两端未施加外部电场的情况下,两个极板上所带的正负电荷处于一种平衡状态。

如上图,当在电容两端施加外电场时,一端极板上开始聚集正电荷,另一端极板则聚集负电荷,随着电容两端的电压不断升高至电源电压,电容充电停止,此时就算断开外电路,电容上的能量也不会消失,原因是正负电荷具有“同性相斥,异性相吸”的特性,两端的电荷相吸引就形成了储存能量的作用。

工频隔离变压器,是指频率为工频(50HZ)的变压器,变压器初级和次级都有电感,与逆变器里面的滤波电感,都可以储存一定的电能。而当电感流过电流时,由于电流会存在磁场,当电流的磁场经过磁芯时,电流磁场会打破“磁畴”的平衡状态,使“磁畴”同时趋向于外部磁场的方向,进而导致磁芯此时会对外表现出磁场。而这个磁芯磁场从无到有的过程,其实就是电感储存磁场的过程。

电感是由漆包线绕制在绝缘骨架或磁芯上形成的元器件。当线圈中有电流通过时,会在周围产生一定的磁场,而当通过的电流含有交流成分时,产生的磁场会不断变化,根据电磁感应原理,变化的磁力线又会在线圈两端产生感应电动势,但此电动势的方向和原来产生的电动势方向相反,并以此来阻碍电流的变化。

由此可以看出,电感的主要作用是阻碍电流的变化。电流增加时,它会阻碍电流的增加,同时通过磁场储存一部分能量;而当电流减小时,它又会阻碍电路中电流的减小,并释放出储存的能量来维持电流。正因为电感有储存能量的特性,所以才有滤波和延迟等功能。

总结:

光伏离网系统,输出功率是由负载决定。当有电动机等感性负载启动时,短时间需要非常大的电流,而这些能量,光伏无法提供,蓄电池也不能提供,锂电池短时间如果过载输出,会引起爆炸。但是,逆变器里的电容、电感、变压器可以储能电量,还可短时间放大几倍输出而不会损坏。

离网逆变器为什么能过载几倍,如下图

离网逆变器为什么能过载几倍

北极星太阳能光伏网讯:在光伏并网系统中,组件、逆变器、电网构成电气系统。阳光辐射有多大,组件转化太阳能,逆变器就发多大的功率,所以并网逆变器对交流过载没有特别要求,因为逆变器的输出功率基本不会超过组件功率。而在光伏离网系统中,组件、蓄电池、逆变器、负载构成电气系统,逆变器的输出功率,是由负载决定的,有些感性负载,如空调、水泵等,里面的电动机,启动功率是额定功率的3-5倍,所以离网逆变器对过载有特别要求。

从上图看出,采用高频隔离技术的离网逆变器,峰值功率可以达到额定功率的两倍;采用工频隔离技术的离网逆变器,峰值功率可以达到额定功率的三倍。那么,一台3kW的高频离网逆变器,可以带动一台1P的空调(启动功率约5.5kVA),一台12kW的工频离网逆变器,可以带动一台6P的空调(启动功率约33kVA)。逆变器给负载提供启动能量,一部分来自于蓄电池或者光伏组件,超出的部分也是靠逆变器自己(内部的储能元件—电容和电感)来提供。

高频 SPF3000-5000TL HV 工频 SPF 4000-12000T HVM

电容和电感都是一种储能元件,不同的是电容是以电场的形式储存电能,电容的容量越大,储存的电量越多。而电感则是以磁场的形式存储能量,电感器磁芯的磁导率越大,电感量也越大,则能够储存的能量也越多。

电容的原理从其结构便可以看出,如上图,两边各有一块金属板引出两个电极,中间由绝缘物质隔开,在电容两端未施加外部电场的情况下,两个极板上所带的正负电荷处于一种平衡状态。

如上图,当在电容两端施加外电场时,一端极板上开始聚集正电荷,另一端极板则聚集负电荷,随着电容两端的电压不断升高至电源电压,电容充电停止,此时就算断开外电路,电容上的能量也不会消失,原因是正负电荷具有“同性相斥,异性相吸”的特性,两端的电荷相吸引就形成了储存能量的作用。

工频隔离变压器,是指频率为工频(50HZ)的变压器,变压器初级和次级都有电感,与逆变器里面的滤波电感,都可以储存一定的电能。而当电感流过电流时,由于电流会存在磁场,当电流的磁场经过磁芯时,电流磁场会打破“磁畴”的平衡状态,使“磁畴”同时趋向于外部磁场的方向,进而导致磁芯此时会对外表现出磁场。而这个磁芯磁场从无到有的过程,其实就是电感储存磁场的过程。

电感是由漆包线绕制在绝缘骨架或磁芯上形成的元器件。当线圈中有电流通过时,会在周围产生一定的磁场,而当通过的电流含有交流成分时,产生的磁场会不断变化,根据电磁感应原理,变化的磁力线又会在线圈两端产生感应电动势,但此电动势的方向和原来产生的电动势方向相反,并以此来阻碍电流的变化。

由此可以看出,电感的主要作用是阻碍电流的变化。电流增加时,它会阻碍电流的增加,同时通过磁场储存一部分能量;而当电流减小时,它又会阻碍电路中电流的减小,并释放出储存的能量来维持电流。正因为电感有储存能量的特性,所以才有滤波和延迟等功能。

总结:

光伏离网系统,输出功率是由负载决定。当有电动机等感性负载启动时,短时间需要非常大的电流,而这些能量,光伏无法提供,蓄电池也不能提供,锂电池短时间如果过载输出,会引起爆炸。但是,逆变器里的电容、电感、变压器可以储能电量,还可短时间放大几倍输出而不会损坏。

北极星太阳能光伏网讯:在光伏并网系统中,组件、逆变器、电网构成电气系统。阳光辐射有多大,组件转化太阳能,逆变器就发多大的功率,所以并网逆变器对交流过载没有特别要求,因为逆变器的输出功率基本不会超过组件功率。而在光伏离网系统中,组件、蓄电池、逆变器、负载构成电气系统,逆变器的输出功率,是由负载决定的,有些感性负载,如空调、水泵等,里面的电动机,启动功率是额定功率的3-5倍,所以离网逆变器对过载有特别要求。

从上图看出,采用高频隔离技术的离网逆变器,峰值功率可以达到额定功率的两倍;采用工频隔离技术的离网逆变器,峰值功率可以达到额定功率的三倍。那么,一台3kW的高频离网逆变器,可以带动一台1P的空调(启动功率约5.5kVA),一台12kW的工频离网逆变器,可以带动一台6P的空调(启动功率约33kVA)。逆变器给负载提供启动能量,一部分来自于蓄电池或者光伏组件,超出的部分也是靠逆变器自己(内部的储能元件—电容和电感)来提供。

高频 SPF3000-5000TL HV 工频 SPF 4000-12000T HVM

电容和电感都是一种储能元件,不同的是电容是以电场的形式储存电能,电容的容量越大,储存的电量越多。而电感则是以磁场的形式存储能量,电感器磁芯的磁导率越大,电感量也越大,则能够储存的能量也越多。

电容的原理从其结构便可以看出,如上图,两边各有一块金属板引出两个电极,中间由绝缘物质隔开,在电容两端未施加外部电场的情况下,两个极板上所带的正负电荷处于一种平衡状态。

如上图,当在电容两端施加外电场时,一端极板上开始聚集正电荷,另一端极板则聚集负电荷,随着电容两端的电压不断升高至电源电压,电容充电停止,此时就算断开外电路,电容上的能量也不会消失,原因是正负电荷具有“同性相斥,异性相吸”的特性,两端的电荷相吸引就形成了储存能量的作用。

工频隔离变压器,是指频率为工频(50HZ)的变压器,变压器初级和次级都有电感,与逆变器里面的滤波电感,都可以储存一定的电能。而当电感流过电流时,由于电流会存在磁场,当电流的磁场经过磁芯时,电流磁场会打破“磁畴”的平衡状态,使“磁畴”同时趋向于外部磁场的方向,进而导致磁芯此时会对外表现出磁场。而这个磁芯磁场从无到有的过程,其实就是电感储存磁场的过程。

电感是由漆包线绕制在绝缘骨架或磁芯上形成的元器件。当线圈中有电流通过时,会在周围产生一定的磁场,而当通过的电流含有交流成分时,产生的磁场会不断变化,根据电磁感应原理,变化的磁力线又会在线圈两端产生感应电动势,但此电动势的方向和原来产生的电动势方向相反,并以此来阻碍电流的变化。

由此可以看出,电感的主要作用是阻碍电流的变化。电流增加时,它会阻碍电流的增加,同时通过磁场储存一部分能量;而当电流减小时,它又会阻碍电路中电流的减小,并释放出储存的能量来维持电流。正因为电感有储存能量的特性,所以才有滤波和延迟等功能。

总结:

光伏离网系统,输出功率是由负载决定。当有电动机等感性负载启动时,短时间需要非常大的电流,而这些能量,光伏无法提供,蓄电池也不能提供,锂电池短时间如果过载输出,会引起爆炸。但是,逆变器里的电容、电感、变压器可以储能电量,还可短时间放大几倍输出而不会损坏。

如下图

离网逆变器为什么能过载几倍,如下图

离网逆变器为什么能过载几倍离网逆变器为什么能过载几倍,见图

12bet离网逆变器为什么能过载几倍离网逆变器为什么能过载几倍

北极星太阳能光伏网讯:在光伏并网系统中,组件、逆变器、电网构成电气系统。阳光辐射有多大,组件转化太阳能,逆变器就发多大的功率,所以并网逆变器对交流过载没有特别要求,因为逆变器的输出功率基本不会超过组件功率。而在光伏离网系统中,组件、蓄电池、逆变器、负载构成电气系统,逆变器的输出功率,是由负载决定的,有些感性负载,如空调、水泵等,里面的电动机,启动功率是额定功率的3-5倍,所以离网逆变器对过载有特别要求。

从上图看出,采用高频隔离技术的离网逆变器,峰值功率可以达到额定功率的两倍;采用工频隔离技术的离网逆变器,峰值功率可以达到额定功率的三倍。那么,一台3kW的高频离网逆变器,可以带动一台1P的空调(启动功率约5.5kVA),一台12kW的工频离网逆变器,可以带动一台6P的空调(启动功率约33kVA)。逆变器给负载提供启动能量,一部分来自于蓄电池或者光伏组件,超出的部分也是靠逆变器自己(内部的储能元件—电容和电感)来提供。

高频 SPF3000-5000TL HV 工频 SPF 4000-12000T HVM

电容和电感都是一种储能元件,不同的是电容是以电场的形式储存电能,电容的容量越大,储存的电量越多。而电感则是以磁场的形式存储能量,电感器磁芯的磁导率越大,电感量也越大,则能够储存的能量也越多。

电容的原理从其结构便可以看出,如上图,两边各有一块金属板引出两个电极,中间由绝缘物质隔开,在电容两端未施加外部电场的情况下,两个极板上所带的正负电荷处于一种平衡状态。

如上图,当在电容两端施加外电场时,一端极板上开始聚集正电荷,另一端极板则聚集负电荷,随着电容两端的电压不断升高至电源电压,电容充电停止,此时就算断开外电路,电容上的能量也不会消失,原因是正负电荷具有“同性相斥,异性相吸”的特性,两端的电荷相吸引就形成了储存能量的作用。

工频隔离变压器,是指频率为工频(50HZ)的变压器,变压器初级和次级都有电感,与逆变器里面的滤波电感,都可以储存一定的电能。而当电感流过电流时,由于电流会存在磁场,当电流的磁场经过磁芯时,电流磁场会打破“磁畴”的平衡状态,使“磁畴”同时趋向于外部磁场的方向,进而导致磁芯此时会对外表现出磁场。而这个磁芯磁场从无到有的过程,其实就是电感储存磁场的过程。

电感是由漆包线绕制在绝缘骨架或磁芯上形成的元器件。当线圈中有电流通过时,会在周围产生一定的磁场,而当通过的电流含有交流成分时,产生的磁场会不断变化,根据电磁感应原理,变化的磁力线又会在线圈两端产生感应电动势,但此电动势的方向和原来产生的电动势方向相反,并以此来阻碍电流的变化。

由此可以看出,电感的主要作用是阻碍电流的变化。电流增加时,它会阻碍电流的增加,同时通过磁场储存一部分能量;而当电流减小时,它又会阻碍电路中电流的减小,并释放出储存的能量来维持电流。正因为电感有储存能量的特性,所以才有滤波和延迟等功能。

总结:

光伏离网系统,输出功率是由负载决定。当有电动机等感性负载启动时,短时间需要非常大的电流,而这些能量,光伏无法提供,蓄电池也不能提供,锂电池短时间如果过载输出,会引起爆炸。但是,逆变器里的电容、电感、变压器可以储能电量,还可短时间放大几倍输出而不会损坏。

离网逆变器为什么能过载几倍

离网逆变器为什么能过载几倍离网逆变器为什么能过载几倍

北极星太阳能光伏网讯:在光伏并网系统中,组件、逆变器、电网构成电气系统。阳光辐射有多大,组件转化太阳能,逆变器就发多大的功率,所以并网逆变器对交流过载没有特别要求,因为逆变器的输出功率基本不会超过组件功率。而在光伏离网系统中,组件、蓄电池、逆变器、负载构成电气系统,逆变器的输出功率,是由负载决定的,有些感性负载,如空调、水泵等,里面的电动机,启动功率是额定功率的3-5倍,所以离网逆变器对过载有特别要求。

从上图看出,采用高频隔离技术的离网逆变器,峰值功率可以达到额定功率的两倍;采用工频隔离技术的离网逆变器,峰值功率可以达到额定功率的三倍。那么,一台3kW的高频离网逆变器,可以带动一台1P的空调(启动功率约5.5kVA),一台12kW的工频离网逆变器,可以带动一台6P的空调(启动功率约33kVA)。逆变器给负载提供启动能量,一部分来自于蓄电池或者光伏组件,超出的部分也是靠逆变器自己(内部的储能元件—电容和电感)来提供。

高频 SPF3000-5000TL HV 工频 SPF 4000-12000T HVM

电容和电感都是一种储能元件,不同的是电容是以电场的形式储存电能,电容的容量越大,储存的电量越多。而电感则是以磁场的形式存储能量,电感器磁芯的磁导率越大,电感量也越大,则能够储存的能量也越多。

电容的原理从其结构便可以看出,如上图,两边各有一块金属板引出两个电极,中间由绝缘物质隔开,在电容两端未施加外部电场的情况下,两个极板上所带的正负电荷处于一种平衡状态。

如上图,当在电容两端施加外电场时,一端极板上开始聚集正电荷,另一端极板则聚集负电荷,随着电容两端的电压不断升高至电源电压,电容充电停止,此时就算断开外电路,电容上的能量也不会消失,原因是正负电荷具有“同性相斥,异性相吸”的特性,两端的电荷相吸引就形成了储存能量的作用。

工频隔离变压器,是指频率为工频(50HZ)的变压器,变压器初级和次级都有电感,与逆变器里面的滤波电感,都可以储存一定的电能。而当电感流过电流时,由于电流会存在磁场,当电流的磁场经过磁芯时,电流磁场会打破“磁畴”的平衡状态,使“磁畴”同时趋向于外部磁场的方向,进而导致磁芯此时会对外表现出磁场。而这个磁芯磁场从无到有的过程,其实就是电感储存磁场的过程。

电感是由漆包线绕制在绝缘骨架或磁芯上形成的元器件。当线圈中有电流通过时,会在周围产生一定的磁场,而当通过的电流含有交流成分时,产生的磁场会不断变化,根据电磁感应原理,变化的磁力线又会在线圈两端产生感应电动势,但此电动势的方向和原来产生的电动势方向相反,并以此来阻碍电流的变化。

由此可以看出,电感的主要作用是阻碍电流的变化。电流增加时,它会阻碍电流的增加,同时通过磁场储存一部分能量;而当电流减小时,它又会阻碍电路中电流的减小,并释放出储存的能量来维持电流。正因为电感有储存能量的特性,所以才有滤波和延迟等功能。

总结:

光伏离网系统,输出功率是由负载决定。当有电动机等感性负载启动时,短时间需要非常大的电流,而这些能量,光伏无法提供,蓄电池也不能提供,锂电池短时间如果过载输出,会引起爆炸。但是,逆变器里的电容、电感、变压器可以储能电量,还可短时间放大几倍输出而不会损坏。

离网逆变器为什么能过载几倍离网逆变器为什么能过载几倍

北极星太阳能光伏网讯:在光伏并网系统中,组件、逆变器、电网构成电气系统。阳光辐射有多大,组件转化太阳能,逆变器就发多大的功率,所以并网逆变器对交流过载没有特别要求,因为逆变器的输出功率基本不会超过组件功率。而在光伏离网系统中,组件、蓄电池、逆变器、负载构成电气系统,逆变器的输出功率,是由负载决定的,有些感性负载,如空调、水泵等,里面的电动机,启动功率是额定功率的3-5倍,所以离网逆变器对过载有特别要求。

从上图看出,采用高频隔离技术的离网逆变器,峰值功率可以达到额定功率的两倍;采用工频隔离技术的离网逆变器,峰值功率可以达到额定功率的三倍。那么,一台3kW的高频离网逆变器,可以带动一台1P的空调(启动功率约5.5kVA),一台12kW的工频离网逆变器,可以带动一台6P的空调(启动功率约33kVA)。逆变器给负载提供启动能量,一部分来自于蓄电池或者光伏组件,超出的部分也是靠逆变器自己(内部的储能元件—电容和电感)来提供。

高频 SPF3000-5000TL HV 工频 SPF 4000-12000T HVM

电容和电感都是一种储能元件,不同的是电容是以电场的形式储存电能,电容的容量越大,储存的电量越多。而电感则是以磁场的形式存储能量,电感器磁芯的磁导率越大,电感量也越大,则能够储存的能量也越多。

电容的原理从其结构便可以看出,如上图,两边各有一块金属板引出两个电极,中间由绝缘物质隔开,在电容两端未施加外部电场的情况下,两个极板上所带的正负电荷处于一种平衡状态。

如上图,当在电容两端施加外电场时,一端极板上开始聚集正电荷,另一端极板则聚集负电荷,随着电容两端的电压不断升高至电源电压,电容充电停止,此时就算断开外电路,电容上的能量也不会消失,原因是正负电荷具有“同性相斥,异性相吸”的特性,两端的电荷相吸引就形成了储存能量的作用。

工频隔离变压器,是指频率为工频(50HZ)的变压器,变压器初级和次级都有电感,与逆变器里面的滤波电感,都可以储存一定的电能。而当电感流过电流时,由于电流会存在磁场,当电流的磁场经过磁芯时,电流磁场会打破“磁畴”的平衡状态,使“磁畴”同时趋向于外部磁场的方向,进而导致磁芯此时会对外表现出磁场。而这个磁芯磁场从无到有的过程,其实就是电感储存磁场的过程。

电感是由漆包线绕制在绝缘骨架或磁芯上形成的元器件。当线圈中有电流通过时,会在周围产生一定的磁场,而当通过的电流含有交流成分时,产生的磁场会不断变化,根据电磁感应原理,变化的磁力线又会在线圈两端产生感应电动势,但此电动势的方向和原来产生的电动势方向相反,并以此来阻碍电流的变化。

由此可以看出,电感的主要作用是阻碍电流的变化。电流增加时,它会阻碍电流的增加,同时通过磁场储存一部分能量;而当电流减小时,它又会阻碍电路中电流的减小,并释放出储存的能量来维持电流。正因为电感有储存能量的特性,所以才有滤波和延迟等功能。

总结:

光伏离网系统,输出功率是由负载决定。当有电动机等感性负载启动时,短时间需要非常大的电流,而这些能量,光伏无法提供,蓄电池也不能提供,锂电池短时间如果过载输出,会引起爆炸。但是,逆变器里的电容、电感、变压器可以储能电量,还可短时间放大几倍输出而不会损坏。

北极星太阳能光伏网讯:在光伏并网系统中,组件、逆变器、电网构成电气系统。阳光辐射有多大,组件转化太阳能,逆变器就发多大的功率,所以并网逆变器对交流过载没有特别要求,因为逆变器的输出功率基本不会超过组件功率。而在光伏离网系统中,组件、蓄电池、逆变器、负载构成电气系统,逆变器的输出功率,是由负载决定的,有些感性负载,如空调、水泵等,里面的电动机,启动功率是额定功率的3-5倍,所以离网逆变器对过载有特别要求。

从上图看出,采用高频隔离技术的离网逆变器,峰值功率可以达到额定功率的两倍;采用工频隔离技术的离网逆变器,峰值功率可以达到额定功率的三倍。那么,一台3kW的高频离网逆变器,可以带动一台1P的空调(启动功率约5.5kVA),一台12kW的工频离网逆变器,可以带动一台6P的空调(启动功率约33kVA)。逆变器给负载提供启动能量,一部分来自于蓄电池或者光伏组件,超出的部分也是靠逆变器自己(内部的储能元件—电容和电感)来提供。

高频 SPF3000-5000TL HV 工频 SPF 4000-12000T HVM

电容和电感都是一种储能元件,不同的是电容是以电场的形式储存电能,电容的容量越大,储存的电量越多。而电感则是以磁场的形式存储能量,电感器磁芯的磁导率越大,电感量也越大,则能够储存的能量也越多。

电容的原理从其结构便可以看出,如上图,两边各有一块金属板引出两个电极,中间由绝缘物质隔开,在电容两端未施加外部电场的情况下,两个极板上所带的正负电荷处于一种平衡状态。

如上图,当在电容两端施加外电场时,一端极板上开始聚集正电荷,另一端极板则聚集负电荷,随着电容两端的电压不断升高至电源电压,电容充电停止,此时就算断开外电路,电容上的能量也不会消失,原因是正负电荷具有“同性相斥,异性相吸”的特性,两端的电荷相吸引就形成了储存能量的作用。

工频隔离变压器,是指频率为工频(50HZ)的变压器,变压器初级和次级都有电感,与逆变器里面的滤波电感,都可以储存一定的电能。而当电感流过电流时,由于电流会存在磁场,当电流的磁场经过磁芯时,电流磁场会打破“磁畴”的平衡状态,使“磁畴”同时趋向于外部磁场的方向,进而导致磁芯此时会对外表现出磁场。而这个磁芯磁场从无到有的过程,其实就是电感储存磁场的过程。

电感是由漆包线绕制在绝缘骨架或磁芯上形成的元器件。当线圈中有电流通过时,会在周围产生一定的磁场,而当通过的电流含有交流成分时,产生的磁场会不断变化,根据电磁感应原理,变化的磁力线又会在线圈两端产生感应电动势,但此电动势的方向和原来产生的电动势方向相反,并以此来阻碍电流的变化。

由此可以看出,电感的主要作用是阻碍电流的变化。电流增加时,它会阻碍电流的增加,同时通过磁场储存一部分能量;而当电流减小时,它又会阻碍电路中电流的减小,并释放出储存的能量来维持电流。正因为电感有储存能量的特性,所以才有滤波和延迟等功能。

总结:

光伏离网系统,输出功率是由负载决定。当有电动机等感性负载启动时,短时间需要非常大的电流,而这些能量,光伏无法提供,蓄电池也不能提供,锂电池短时间如果过载输出,会引起爆炸。但是,逆变器里的电容、电感、变压器可以储能电量,还可短时间放大几倍输出而不会损坏。

北极星太阳能光伏网讯:在光伏并网系统中,组件、逆变器、电网构成电气系统。阳光辐射有多大,组件转化太阳能,逆变器就发多大的功率,所以并网逆变器对交流过载没有特别要求,因为逆变器的输出功率基本不会超过组件功率。而在光伏离网系统中,组件、蓄电池、逆变器、负载构成电气系统,逆变器的输出功率,是由负载决定的,有些感性负载,如空调、水泵等,里面的电动机,启动功率是额定功率的3-5倍,所以离网逆变器对过载有特别要求。

从上图看出,采用高频隔离技术的离网逆变器,峰值功率可以达到额定功率的两倍;采用工频隔离技术的离网逆变器,峰值功率可以达到额定功率的三倍。那么,一台3kW的高频离网逆变器,可以带动一台1P的空调(启动功率约5.5kVA),一台12kW的工频离网逆变器,可以带动一台6P的空调(启动功率约33kVA)。逆变器给负载提供启动能量,一部分来自于蓄电池或者光伏组件,超出的部分也是靠逆变器自己(内部的储能元件—电容和电感)来提供。

高频 SPF3000-5000TL HV 工频 SPF 4000-12000T HVM

电容和电感都是一种储能元件,不同的是电容是以电场的形式储存电能,电容的容量越大,储存的电量越多。而电感则是以磁场的形式存储能量,电感器磁芯的磁导率越大,电感量也越大,则能够储存的能量也越多。

电容的原理从其结构便可以看出,如上图,两边各有一块金属板引出两个电极,中间由绝缘物质隔开,在电容两端未施加外部电场的情况下,两个极板上所带的正负电荷处于一种平衡状态。

如上图,当在电容两端施加外电场时,一端极板上开始聚集正电荷,另一端极板则聚集负电荷,随着电容两端的电压不断升高至电源电压,电容充电停止,此时就算断开外电路,电容上的能量也不会消失,原因是正负电荷具有“同性相斥,异性相吸”的特性,两端的电荷相吸引就形成了储存能量的作用。

工频隔离变压器,是指频率为工频(50HZ)的变压器,变压器初级和次级都有电感,与逆变器里面的滤波电感,都可以储存一定的电能。而当电感流过电流时,由于电流会存在磁场,当电流的磁场经过磁芯时,电流磁场会打破“磁畴”的平衡状态,使“磁畴”同时趋向于外部磁场的方向,进而导致磁芯此时会对外表现出磁场。而这个磁芯磁场从无到有的过程,其实就是电感储存磁场的过程。

电感是由漆包线绕制在绝缘骨架或磁芯上形成的元器件。当线圈中有电流通过时,会在周围产生一定的磁场,而当通过的电流含有交流成分时,产生的磁场会不断变化,根据电磁感应原理,变化的磁力线又会在线圈两端产生感应电动势,但此电动势的方向和原来产生的电动势方向相反,并以此来阻碍电流的变化。

由此可以看出,电感的主要作用是阻碍电流的变化。电流增加时,它会阻碍电流的增加,同时通过磁场储存一部分能量;而当电流减小时,它又会阻碍电路中电流的减小,并释放出储存的能量来维持电流。正因为电感有储存能量的特性,所以才有滤波和延迟等功能。

总结:

光伏离网系统,输出功率是由负载决定。当有电动机等感性负载启动时,短时间需要非常大的电流,而这些能量,光伏无法提供,蓄电池也不能提供,锂电池短时间如果过载输出,会引起爆炸。但是,逆变器里的电容、电感、变压器可以储能电量,还可短时间放大几倍输出而不会损坏。

北极星太阳能光伏网讯:在光伏并网系统中,组件、逆变器、电网构成电气系统。阳光辐射有多大,组件转化太阳能,逆变器就发多大的功率,所以并网逆变器对交流过载没有特别要求,因为逆变器的输出功率基本不会超过组件功率。而在光伏离网系统中,组件、蓄电池、逆变器、负载构成电气系统,逆变器的输出功率,是由负载决定的,有些感性负载,如空调、水泵等,里面的电动机,启动功率是额定功率的3-5倍,所以离网逆变器对过载有特别要求。

从上图看出,采用高频隔离技术的离网逆变器,峰值功率可以达到额定功率的两倍;采用工频隔离技术的离网逆变器,峰值功率可以达到额定功率的三倍。那么,一台3kW的高频离网逆变器,可以带动一台1P的空调(启动功率约5.5kVA),一台12kW的工频离网逆变器,可以带动一台6P的空调(启动功率约33kVA)。逆变器给负载提供启动能量,一部分来自于蓄电池或者光伏组件,超出的部分也是靠逆变器自己(内部的储能元件—电容和电感)来提供。

高频 SPF3000-5000TL HV 工频 SPF 4000-12000T HVM

电容和电感都是一种储能元件,不同的是电容是以电场的形式储存电能,电容的容量越大,储存的电量越多。而电感则是以磁场的形式存储能量,电感器磁芯的磁导率越大,电感量也越大,则能够储存的能量也越多。

电容的原理从其结构便可以看出,如上图,两边各有一块金属板引出两个电极,中间由绝缘物质隔开,在电容两端未施加外部电场的情况下,两个极板上所带的正负电荷处于一种平衡状态。

如上图,当在电容两端施加外电场时,一端极板上开始聚集正电荷,另一端极板则聚集负电荷,随着电容两端的电压不断升高至电源电压,电容充电停止,此时就算断开外电路,电容上的能量也不会消失,原因是正负电荷具有“同性相斥,异性相吸”的特性,两端的电荷相吸引就形成了储存能量的作用。

工频隔离变压器,是指频率为工频(50HZ)的变压器,变压器初级和次级都有电感,与逆变器里面的滤波电感,都可以储存一定的电能。而当电感流过电流时,由于电流会存在磁场,当电流的磁场经过磁芯时,电流磁场会打破“磁畴”的平衡状态,使“磁畴”同时趋向于外部磁场的方向,进而导致磁芯此时会对外表现出磁场。而这个磁芯磁场从无到有的过程,其实就是电感储存磁场的过程。

电感是由漆包线绕制在绝缘骨架或磁芯上形成的元器件。当线圈中有电流通过时,会在周围产生一定的磁场,而当通过的电流含有交流成分时,产生的磁场会不断变化,根据电磁感应原理,变化的磁力线又会在线圈两端产生感应电动势,但此电动势的方向和原来产生的电动势方向相反,并以此来阻碍电流的变化。

由此可以看出,电感的主要作用是阻碍电流的变化。电流增加时,它会阻碍电流的增加,同时通过磁场储存一部分能量;而当电流减小时,它又会阻碍电路中电流的减小,并释放出储存的能量来维持电流。正因为电感有储存能量的特性,所以才有滤波和延迟等功能。

总结:

光伏离网系统,输出功率是由负载决定。当有电动机等感性负载启动时,短时间需要非常大的电流,而这些能量,光伏无法提供,蓄电池也不能提供,锂电池短时间如果过载输出,会引起爆炸。但是,逆变器里的电容、电感、变压器可以储能电量,还可短时间放大几倍输出而不会损坏。

离网逆变器为什么能过载几倍

北极星太阳能光伏网讯:在光伏并网系统中,组件、逆变器、电网构成电气系统。阳光辐射有多大,组件转化太阳能,逆变器就发多大的功率,所以并网逆变器对交流过载没有特别要求,因为逆变器的输出功率基本不会超过组件功率。而在光伏离网系统中,组件、蓄电池、逆变器、负载构成电气系统,逆变器的输出功率,是由负载决定的,有些感性负载,如空调、水泵等,里面的电动机,启动功率是额定功率的3-5倍,所以离网逆变器对过载有特别要求。

从上图看出,采用高频隔离技术的离网逆变器,峰值功率可以达到额定功率的两倍;采用工频隔离技术的离网逆变器,峰值功率可以达到额定功率的三倍。那么,一台3kW的高频离网逆变器,可以带动一台1P的空调(启动功率约5.5kVA),一台12kW的工频离网逆变器,可以带动一台6P的空调(启动功率约33kVA)。逆变器给负载提供启动能量,一部分来自于蓄电池或者光伏组件,超出的部分也是靠逆变器自己(内部的储能元件—电容和电感)来提供。

高频 SPF3000-5000TL HV 工频 SPF 4000-12000T HVM

电容和电感都是一种储能元件,不同的是电容是以电场的形式储存电能,电容的容量越大,储存的电量越多。而电感则是以磁场的形式存储能量,电感器磁芯的磁导率越大,电感量也越大,则能够储存的能量也越多。

电容的原理从其结构便可以看出,如上图,两边各有一块金属板引出两个电极,中间由绝缘物质隔开,在电容两端未施加外部电场的情况下,两个极板上所带的正负电荷处于一种平衡状态。

如上图,当在电容两端施加外电场时,一端极板上开始聚集正电荷,另一端极板则聚集负电荷,随着电容两端的电压不断升高至电源电压,电容充电停止,此时就算断开外电路,电容上的能量也不会消失,原因是正负电荷具有“同性相斥,异性相吸”的特性,两端的电荷相吸引就形成了储存能量的作用。

工频隔离变压器,是指频率为工频(50HZ)的变压器,变压器初级和次级都有电感,与逆变器里面的滤波电感,都可以储存一定的电能。而当电感流过电流时,由于电流会存在磁场,当电流的磁场经过磁芯时,电流磁场会打破“磁畴”的平衡状态,使“磁畴”同时趋向于外部磁场的方向,进而导致磁芯此时会对外表现出磁场。而这个磁芯磁场从无到有的过程,其实就是电感储存磁场的过程。

电感是由漆包线绕制在绝缘骨架或磁芯上形成的元器件。当线圈中有电流通过时,会在周围产生一定的磁场,而当通过的电流含有交流成分时,产生的磁场会不断变化,根据电磁感应原理,变化的磁力线又会在线圈两端产生感应电动势,但此电动势的方向和原来产生的电动势方向相反,并以此来阻碍电流的变化。

由此可以看出,电感的主要作用是阻碍电流的变化。电流增加时,它会阻碍电流的增加,同时通过磁场储存一部分能量;而当电流减小时,它又会阻碍电路中电流的减小,并释放出储存的能量来维持电流。正因为电感有储存能量的特性,所以才有滤波和延迟等功能。

总结:

光伏离网系统,输出功率是由负载决定。当有电动机等感性负载启动时,短时间需要非常大的电流,而这些能量,光伏无法提供,蓄电池也不能提供,锂电池短时间如果过载输出,会引起爆炸。但是,逆变器里的电容、电感、变压器可以储能电量,还可短时间放大几倍输出而不会损坏。

离网逆变器为什么能过载几倍离网逆变器为什么能过载几倍

北极星太阳能光伏网讯:在光伏并网系统中,组件、逆变器、电网构成电气系统。阳光辐射有多大,组件转化太阳能,逆变器就发多大的功率,所以并网逆变器对交流过载没有特别要求,因为逆变器的输出功率基本不会超过组件功率。而在光伏离网系统中,组件、蓄电池、逆变器、负载构成电气系统,逆变器的输出功率,是由负载决定的,有些感性负载,如空调、水泵等,里面的电动机,启动功率是额定功率的3-5倍,所以离网逆变器对过载有特别要求。

从上图看出,采用高频隔离技术的离网逆变器,峰值功率可以达到额定功率的两倍;采用工频隔离技术的离网逆变器,峰值功率可以达到额定功率的三倍。那么,一台3kW的高频离网逆变器,可以带动一台1P的空调(启动功率约5.5kVA),一台12kW的工频离网逆变器,可以带动一台6P的空调(启动功率约33kVA)。逆变器给负载提供启动能量,一部分来自于蓄电池或者光伏组件,超出的部分也是靠逆变器自己(内部的储能元件—电容和电感)来提供。

高频 SPF3000-5000TL HV 工频 SPF 4000-12000T HVM

电容和电感都是一种储能元件,不同的是电容是以电场的形式储存电能,电容的容量越大,储存的电量越多。而电感则是以磁场的形式存储能量,电感器磁芯的磁导率越大,电感量也越大,则能够储存的能量也越多。

电容的原理从其结构便可以看出,如上图,两边各有一块金属板引出两个电极,中间由绝缘物质隔开,在电容两端未施加外部电场的情况下,两个极板上所带的正负电荷处于一种平衡状态。

如上图,当在电容两端施加外电场时,一端极板上开始聚集正电荷,另一端极板则聚集负电荷,随着电容两端的电压不断升高至电源电压,电容充电停止,此时就算断开外电路,电容上的能量也不会消失,原因是正负电荷具有“同性相斥,异性相吸”的特性,两端的电荷相吸引就形成了储存能量的作用。

工频隔离变压器,是指频率为工频(50HZ)的变压器,变压器初级和次级都有电感,与逆变器里面的滤波电感,都可以储存一定的电能。而当电感流过电流时,由于电流会存在磁场,当电流的磁场经过磁芯时,电流磁场会打破“磁畴”的平衡状态,使“磁畴”同时趋向于外部磁场的方向,进而导致磁芯此时会对外表现出磁场。而这个磁芯磁场从无到有的过程,其实就是电感储存磁场的过程。

电感是由漆包线绕制在绝缘骨架或磁芯上形成的元器件。当线圈中有电流通过时,会在周围产生一定的磁场,而当通过的电流含有交流成分时,产生的磁场会不断变化,根据电磁感应原理,变化的磁力线又会在线圈两端产生感应电动势,但此电动势的方向和原来产生的电动势方向相反,并以此来阻碍电流的变化。

由此可以看出,电感的主要作用是阻碍电流的变化。电流增加时,它会阻碍电流的增加,同时通过磁场储存一部分能量;而当电流减小时,它又会阻碍电路中电流的减小,并释放出储存的能量来维持电流。正因为电感有储存能量的特性,所以才有滤波和延迟等功能。

总结:

光伏离网系统,输出功率是由负载决定。当有电动机等感性负载启动时,短时间需要非常大的电流,而这些能量,光伏无法提供,蓄电池也不能提供,锂电池短时间如果过载输出,会引起爆炸。但是,逆变器里的电容、电感、变压器可以储能电量,还可短时间放大几倍输出而不会损坏。

北极星太阳能光伏网讯:在光伏并网系统中,组件、逆变器、电网构成电气系统。阳光辐射有多大,组件转化太阳能,逆变器就发多大的功率,所以并网逆变器对交流过载没有特别要求,因为逆变器的输出功率基本不会超过组件功率。而在光伏离网系统中,组件、蓄电池、逆变器、负载构成电气系统,逆变器的输出功率,是由负载决定的,有些感性负载,如空调、水泵等,里面的电动机,启动功率是额定功率的3-5倍,所以离网逆变器对过载有特别要求。

从上图看出,采用高频隔离技术的离网逆变器,峰值功率可以达到额定功率的两倍;采用工频隔离技术的离网逆变器,峰值功率可以达到额定功率的三倍。那么,一台3kW的高频离网逆变器,可以带动一台1P的空调(启动功率约5.5kVA),一台12kW的工频离网逆变器,可以带动一台6P的空调(启动功率约33kVA)。逆变器给负载提供启动能量,一部分来自于蓄电池或者光伏组件,超出的部分也是靠逆变器自己(内部的储能元件—电容和电感)来提供。

高频 SPF3000-5000TL HV 工频 SPF 4000-12000T HVM

电容和电感都是一种储能元件,不同的是电容是以电场的形式储存电能,电容的容量越大,储存的电量越多。而电感则是以磁场的形式存储能量,电感器磁芯的磁导率越大,电感量也越大,则能够储存的能量也越多。

电容的原理从其结构便可以看出,如上图,两边各有一块金属板引出两个电极,中间由绝缘物质隔开,在电容两端未施加外部电场的情况下,两个极板上所带的正负电荷处于一种平衡状态。

如上图,当在电容两端施加外电场时,一端极板上开始聚集正电荷,另一端极板则聚集负电荷,随着电容两端的电压不断升高至电源电压,电容充电停止,此时就算断开外电路,电容上的能量也不会消失,原因是正负电荷具有“同性相斥,异性相吸”的特性,两端的电荷相吸引就形成了储存能量的作用。

工频隔离变压器,是指频率为工频(50HZ)的变压器,变压器初级和次级都有电感,与逆变器里面的滤波电感,都可以储存一定的电能。而当电感流过电流时,由于电流会存在磁场,当电流的磁场经过磁芯时,电流磁场会打破“磁畴”的平衡状态,使“磁畴”同时趋向于外部磁场的方向,进而导致磁芯此时会对外表现出磁场。而这个磁芯磁场从无到有的过程,其实就是电感储存磁场的过程。

电感是由漆包线绕制在绝缘骨架或磁芯上形成的元器件。当线圈中有电流通过时,会在周围产生一定的磁场,而当通过的电流含有交流成分时,产生的磁场会不断变化,根据电磁感应原理,变化的磁力线又会在线圈两端产生感应电动势,但此电动势的方向和原来产生的电动势方向相反,并以此来阻碍电流的变化。

由此可以看出,电感的主要作用是阻碍电流的变化。电流增加时,它会阻碍电流的增加,同时通过磁场储存一部分能量;而当电流减小时,它又会阻碍电路中电流的减小,并释放出储存的能量来维持电流。正因为电感有储存能量的特性,所以才有滤波和延迟等功能。

总结:

光伏离网系统,输出功率是由负载决定。当有电动机等感性负载启动时,短时间需要非常大的电流,而这些能量,光伏无法提供,蓄电池也不能提供,锂电池短时间如果过载输出,会引起爆炸。但是,逆变器里的电容、电感、变压器可以储能电量,还可短时间放大几倍输出而不会损坏。

北极星太阳能光伏网讯:在光伏并网系统中,组件、逆变器、电网构成电气系统。阳光辐射有多大,组件转化太阳能,逆变器就发多大的功率,所以并网逆变器对交流过载没有特别要求,因为逆变器的输出功率基本不会超过组件功率。而在光伏离网系统中,组件、蓄电池、逆变器、负载构成电气系统,逆变器的输出功率,是由负载决定的,有些感性负载,如空调、水泵等,里面的电动机,启动功率是额定功率的3-5倍,所以离网逆变器对过载有特别要求。

从上图看出,采用高频隔离技术的离网逆变器,峰值功率可以达到额定功率的两倍;采用工频隔离技术的离网逆变器,峰值功率可以达到额定功率的三倍。那么,一台3kW的高频离网逆变器,可以带动一台1P的空调(启动功率约5.5kVA),一台12kW的工频离网逆变器,可以带动一台6P的空调(启动功率约33kVA)。逆变器给负载提供启动能量,一部分来自于蓄电池或者光伏组件,超出的部分也是靠逆变器自己(内部的储能元件—电容和电感)来提供。

高频 SPF3000-5000TL HV 工频 SPF 4000-12000T HVM

电容和电感都是一种储能元件,不同的是电容是以电场的形式储存电能,电容的容量越大,储存的电量越多。而电感则是以磁场的形式存储能量,电感器磁芯的磁导率越大,电感量也越大,则能够储存的能量也越多。

电容的原理从其结构便可以看出,如上图,两边各有一块金属板引出两个电极,中间由绝缘物质隔开,在电容两端未施加外部电场的情况下,两个极板上所带的正负电荷处于一种平衡状态。

如上图,当在电容两端施加外电场时,一端极板上开始聚集正电荷,另一端极板则聚集负电荷,随着电容两端的电压不断升高至电源电压,电容充电停止,此时就算断开外电路,电容上的能量也不会消失,原因是正负电荷具有“同性相斥,异性相吸”的特性,两端的电荷相吸引就形成了储存能量的作用。

工频隔离变压器,是指频率为工频(50HZ)的变压器,变压器初级和次级都有电感,与逆变器里面的滤波电感,都可以储存一定的电能。而当电感流过电流时,由于电流会存在磁场,当电流的磁场经过磁芯时,电流磁场会打破“磁畴”的平衡状态,使“磁畴”同时趋向于外部磁场的方向,进而导致磁芯此时会对外表现出磁场。而这个磁芯磁场从无到有的过程,其实就是电感储存磁场的过程。

电感是由漆包线绕制在绝缘骨架或磁芯上形成的元器件。当线圈中有电流通过时,会在周围产生一定的磁场,而当通过的电流含有交流成分时,产生的磁场会不断变化,根据电磁感应原理,变化的磁力线又会在线圈两端产生感应电动势,但此电动势的方向和原来产生的电动势方向相反,并以此来阻碍电流的变化。

由此可以看出,电感的主要作用是阻碍电流的变化。电流增加时,它会阻碍电流的增加,同时通过磁场储存一部分能量;而当电流减小时,它又会阻碍电路中电流的减小,并释放出储存的能量来维持电流。正因为电感有储存能量的特性,所以才有滤波和延迟等功能。

总结:

光伏离网系统,输出功率是由负载决定。当有电动机等感性负载启动时,短时间需要非常大的电流,而这些能量,光伏无法提供,蓄电池也不能提供,锂电池短时间如果过载输出,会引起爆炸。但是,逆变器里的电容、电感、变压器可以储能电量,还可短时间放大几倍输出而不会损坏。

离网逆变器为什么能过载几倍离网逆变器为什么能过载几倍离网逆变器为什么能过载几倍离网逆变器为什么能过载几倍离网逆变器为什么能过载几倍。

离网逆变器为什么能过载几倍

12bet离网逆变器为什么能过载几倍

北极星太阳能光伏网讯:在光伏并网系统中,组件、逆变器、电网构成电气系统。阳光辐射有多大,组件转化太阳能,逆变器就发多大的功率,所以并网逆变器对交流过载没有特别要求,因为逆变器的输出功率基本不会超过组件功率。而在光伏离网系统中,组件、蓄电池、逆变器、负载构成电气系统,逆变器的输出功率,是由负载决定的,有些感性负载,如空调、水泵等,里面的电动机,启动功率是额定功率的3-5倍,所以离网逆变器对过载有特别要求。

从上图看出,采用高频隔离技术的离网逆变器,峰值功率可以达到额定功率的两倍;采用工频隔离技术的离网逆变器,峰值功率可以达到额定功率的三倍。那么,一台3kW的高频离网逆变器,可以带动一台1P的空调(启动功率约5.5kVA),一台12kW的工频离网逆变器,可以带动一台6P的空调(启动功率约33kVA)。逆变器给负载提供启动能量,一部分来自于蓄电池或者光伏组件,超出的部分也是靠逆变器自己(内部的储能元件—电容和电感)来提供。

高频 SPF3000-5000TL HV 工频 SPF 4000-12000T HVM

电容和电感都是一种储能元件,不同的是电容是以电场的形式储存电能,电容的容量越大,储存的电量越多。而电感则是以磁场的形式存储能量,电感器磁芯的磁导率越大,电感量也越大,则能够储存的能量也越多。

电容的原理从其结构便可以看出,如上图,两边各有一块金属板引出两个电极,中间由绝缘物质隔开,在电容两端未施加外部电场的情况下,两个极板上所带的正负电荷处于一种平衡状态。

如上图,当在电容两端施加外电场时,一端极板上开始聚集正电荷,另一端极板则聚集负电荷,随着电容两端的电压不断升高至电源电压,电容充电停止,此时就算断开外电路,电容上的能量也不会消失,原因是正负电荷具有“同性相斥,异性相吸”的特性,两端的电荷相吸引就形成了储存能量的作用。

工频隔离变压器,是指频率为工频(50HZ)的变压器,变压器初级和次级都有电感,与逆变器里面的滤波电感,都可以储存一定的电能。而当电感流过电流时,由于电流会存在磁场,当电流的磁场经过磁芯时,电流磁场会打破“磁畴”的平衡状态,使“磁畴”同时趋向于外部磁场的方向,进而导致磁芯此时会对外表现出磁场。而这个磁芯磁场从无到有的过程,其实就是电感储存磁场的过程。

电感是由漆包线绕制在绝缘骨架或磁芯上形成的元器件。当线圈中有电流通过时,会在周围产生一定的磁场,而当通过的电流含有交流成分时,产生的磁场会不断变化,根据电磁感应原理,变化的磁力线又会在线圈两端产生感应电动势,但此电动势的方向和原来产生的电动势方向相反,并以此来阻碍电流的变化。

由此可以看出,电感的主要作用是阻碍电流的变化。电流增加时,它会阻碍电流的增加,同时通过磁场储存一部分能量;而当电流减小时,它又会阻碍电路中电流的减小,并释放出储存的能量来维持电流。正因为电感有储存能量的特性,所以才有滤波和延迟等功能。

总结:

光伏离网系统,输出功率是由负载决定。当有电动机等感性负载启动时,短时间需要非常大的电流,而这些能量,光伏无法提供,蓄电池也不能提供,锂电池短时间如果过载输出,会引起爆炸。但是,逆变器里的电容、电感、变压器可以储能电量,还可短时间放大几倍输出而不会损坏。

离网逆变器为什么能过载几倍

北极星太阳能光伏网讯:在光伏并网系统中,组件、逆变器、电网构成电气系统。阳光辐射有多大,组件转化太阳能,逆变器就发多大的功率,所以并网逆变器对交流过载没有特别要求,因为逆变器的输出功率基本不会超过组件功率。而在光伏离网系统中,组件、蓄电池、逆变器、负载构成电气系统,逆变器的输出功率,是由负载决定的,有些感性负载,如空调、水泵等,里面的电动机,启动功率是额定功率的3-5倍,所以离网逆变器对过载有特别要求。

从上图看出,采用高频隔离技术的离网逆变器,峰值功率可以达到额定功率的两倍;采用工频隔离技术的离网逆变器,峰值功率可以达到额定功率的三倍。那么,一台3kW的高频离网逆变器,可以带动一台1P的空调(启动功率约5.5kVA),一台12kW的工频离网逆变器,可以带动一台6P的空调(启动功率约33kVA)。逆变器给负载提供启动能量,一部分来自于蓄电池或者光伏组件,超出的部分也是靠逆变器自己(内部的储能元件—电容和电感)来提供。

高频 SPF3000-5000TL HV 工频 SPF 4000-12000T HVM

电容和电感都是一种储能元件,不同的是电容是以电场的形式储存电能,电容的容量越大,储存的电量越多。而电感则是以磁场的形式存储能量,电感器磁芯的磁导率越大,电感量也越大,则能够储存的能量也越多。

电容的原理从其结构便可以看出,如上图,两边各有一块金属板引出两个电极,中间由绝缘物质隔开,在电容两端未施加外部电场的情况下,两个极板上所带的正负电荷处于一种平衡状态。

如上图,当在电容两端施加外电场时,一端极板上开始聚集正电荷,另一端极板则聚集负电荷,随着电容两端的电压不断升高至电源电压,电容充电停止,此时就算断开外电路,电容上的能量也不会消失,原因是正负电荷具有“同性相斥,异性相吸”的特性,两端的电荷相吸引就形成了储存能量的作用。

工频隔离变压器,是指频率为工频(50HZ)的变压器,变压器初级和次级都有电感,与逆变器里面的滤波电感,都可以储存一定的电能。而当电感流过电流时,由于电流会存在磁场,当电流的磁场经过磁芯时,电流磁场会打破“磁畴”的平衡状态,使“磁畴”同时趋向于外部磁场的方向,进而导致磁芯此时会对外表现出磁场。而这个磁芯磁场从无到有的过程,其实就是电感储存磁场的过程。

电感是由漆包线绕制在绝缘骨架或磁芯上形成的元器件。当线圈中有电流通过时,会在周围产生一定的磁场,而当通过的电流含有交流成分时,产生的磁场会不断变化,根据电磁感应原理,变化的磁力线又会在线圈两端产生感应电动势,但此电动势的方向和原来产生的电动势方向相反,并以此来阻碍电流的变化。

由此可以看出,电感的主要作用是阻碍电流的变化。电流增加时,它会阻碍电流的增加,同时通过磁场储存一部分能量;而当电流减小时,它又会阻碍电路中电流的减小,并释放出储存的能量来维持电流。正因为电感有储存能量的特性,所以才有滤波和延迟等功能。

总结:

光伏离网系统,输出功率是由负载决定。当有电动机等感性负载启动时,短时间需要非常大的电流,而这些能量,光伏无法提供,蓄电池也不能提供,锂电池短时间如果过载输出,会引起爆炸。但是,逆变器里的电容、电感、变压器可以储能电量,还可短时间放大几倍输出而不会损坏。

离网逆变器为什么能过载几倍离网逆变器为什么能过载几倍

北极星太阳能光伏网讯:在光伏并网系统中,组件、逆变器、电网构成电气系统。阳光辐射有多大,组件转化太阳能,逆变器就发多大的功率,所以并网逆变器对交流过载没有特别要求,因为逆变器的输出功率基本不会超过组件功率。而在光伏离网系统中,组件、蓄电池、逆变器、负载构成电气系统,逆变器的输出功率,是由负载决定的,有些感性负载,如空调、水泵等,里面的电动机,启动功率是额定功率的3-5倍,所以离网逆变器对过载有特别要求。

从上图看出,采用高频隔离技术的离网逆变器,峰值功率可以达到额定功率的两倍;采用工频隔离技术的离网逆变器,峰值功率可以达到额定功率的三倍。那么,一台3kW的高频离网逆变器,可以带动一台1P的空调(启动功率约5.5kVA),一台12kW的工频离网逆变器,可以带动一台6P的空调(启动功率约33kVA)。逆变器给负载提供启动能量,一部分来自于蓄电池或者光伏组件,超出的部分也是靠逆变器自己(内部的储能元件—电容和电感)来提供。

高频 SPF3000-5000TL HV 工频 SPF 4000-12000T HVM

电容和电感都是一种储能元件,不同的是电容是以电场的形式储存电能,电容的容量越大,储存的电量越多。而电感则是以磁场的形式存储能量,电感器磁芯的磁导率越大,电感量也越大,则能够储存的能量也越多。

电容的原理从其结构便可以看出,如上图,两边各有一块金属板引出两个电极,中间由绝缘物质隔开,在电容两端未施加外部电场的情况下,两个极板上所带的正负电荷处于一种平衡状态。

如上图,当在电容两端施加外电场时,一端极板上开始聚集正电荷,另一端极板则聚集负电荷,随着电容两端的电压不断升高至电源电压,电容充电停止,此时就算断开外电路,电容上的能量也不会消失,原因是正负电荷具有“同性相斥,异性相吸”的特性,两端的电荷相吸引就形成了储存能量的作用。

工频隔离变压器,是指频率为工频(50HZ)的变压器,变压器初级和次级都有电感,与逆变器里面的滤波电感,都可以储存一定的电能。而当电感流过电流时,由于电流会存在磁场,当电流的磁场经过磁芯时,电流磁场会打破“磁畴”的平衡状态,使“磁畴”同时趋向于外部磁场的方向,进而导致磁芯此时会对外表现出磁场。而这个磁芯磁场从无到有的过程,其实就是电感储存磁场的过程。

电感是由漆包线绕制在绝缘骨架或磁芯上形成的元器件。当线圈中有电流通过时,会在周围产生一定的磁场,而当通过的电流含有交流成分时,产生的磁场会不断变化,根据电磁感应原理,变化的磁力线又会在线圈两端产生感应电动势,但此电动势的方向和原来产生的电动势方向相反,并以此来阻碍电流的变化。

由此可以看出,电感的主要作用是阻碍电流的变化。电流增加时,它会阻碍电流的增加,同时通过磁场储存一部分能量;而当电流减小时,它又会阻碍电路中电流的减小,并释放出储存的能量来维持电流。正因为电感有储存能量的特性,所以才有滤波和延迟等功能。

总结:

光伏离网系统,输出功率是由负载决定。当有电动机等感性负载启动时,短时间需要非常大的电流,而这些能量,光伏无法提供,蓄电池也不能提供,锂电池短时间如果过载输出,会引起爆炸。但是,逆变器里的电容、电感、变压器可以储能电量,还可短时间放大几倍输出而不会损坏。

离网逆变器为什么能过载几倍

北极星太阳能光伏网讯:在光伏并网系统中,组件、逆变器、电网构成电气系统。阳光辐射有多大,组件转化太阳能,逆变器就发多大的功率,所以并网逆变器对交流过载没有特别要求,因为逆变器的输出功率基本不会超过组件功率。而在光伏离网系统中,组件、蓄电池、逆变器、负载构成电气系统,逆变器的输出功率,是由负载决定的,有些感性负载,如空调、水泵等,里面的电动机,启动功率是额定功率的3-5倍,所以离网逆变器对过载有特别要求。

从上图看出,采用高频隔离技术的离网逆变器,峰值功率可以达到额定功率的两倍;采用工频隔离技术的离网逆变器,峰值功率可以达到额定功率的三倍。那么,一台3kW的高频离网逆变器,可以带动一台1P的空调(启动功率约5.5kVA),一台12kW的工频离网逆变器,可以带动一台6P的空调(启动功率约33kVA)。逆变器给负载提供启动能量,一部分来自于蓄电池或者光伏组件,超出的部分也是靠逆变器自己(内部的储能元件—电容和电感)来提供。

高频 SPF3000-5000TL HV 工频 SPF 4000-12000T HVM

电容和电感都是一种储能元件,不同的是电容是以电场的形式储存电能,电容的容量越大,储存的电量越多。而电感则是以磁场的形式存储能量,电感器磁芯的磁导率越大,电感量也越大,则能够储存的能量也越多。

电容的原理从其结构便可以看出,如上图,两边各有一块金属板引出两个电极,中间由绝缘物质隔开,在电容两端未施加外部电场的情况下,两个极板上所带的正负电荷处于一种平衡状态。

如上图,当在电容两端施加外电场时,一端极板上开始聚集正电荷,另一端极板则聚集负电荷,随着电容两端的电压不断升高至电源电压,电容充电停止,此时就算断开外电路,电容上的能量也不会消失,原因是正负电荷具有“同性相斥,异性相吸”的特性,两端的电荷相吸引就形成了储存能量的作用。

工频隔离变压器,是指频率为工频(50HZ)的变压器,变压器初级和次级都有电感,与逆变器里面的滤波电感,都可以储存一定的电能。而当电感流过电流时,由于电流会存在磁场,当电流的磁场经过磁芯时,电流磁场会打破“磁畴”的平衡状态,使“磁畴”同时趋向于外部磁场的方向,进而导致磁芯此时会对外表现出磁场。而这个磁芯磁场从无到有的过程,其实就是电感储存磁场的过程。

电感是由漆包线绕制在绝缘骨架或磁芯上形成的元器件。当线圈中有电流通过时,会在周围产生一定的磁场,而当通过的电流含有交流成分时,产生的磁场会不断变化,根据电磁感应原理,变化的磁力线又会在线圈两端产生感应电动势,但此电动势的方向和原来产生的电动势方向相反,并以此来阻碍电流的变化。

由此可以看出,电感的主要作用是阻碍电流的变化。电流增加时,它会阻碍电流的增加,同时通过磁场储存一部分能量;而当电流减小时,它又会阻碍电路中电流的减小,并释放出储存的能量来维持电流。正因为电感有储存能量的特性,所以才有滤波和延迟等功能。

总结:

光伏离网系统,输出功率是由负载决定。当有电动机等感性负载启动时,短时间需要非常大的电流,而这些能量,光伏无法提供,蓄电池也不能提供,锂电池短时间如果过载输出,会引起爆炸。但是,逆变器里的电容、电感、变压器可以储能电量,还可短时间放大几倍输出而不会损坏。

离网逆变器为什么能过载几倍。

北极星太阳能光伏网讯:在光伏并网系统中,组件、逆变器、电网构成电气系统。阳光辐射有多大,组件转化太阳能,逆变器就发多大的功率,所以并网逆变器对交流过载没有特别要求,因为逆变器的输出功率基本不会超过组件功率。而在光伏离网系统中,组件、蓄电池、逆变器、负载构成电气系统,逆变器的输出功率,是由负载决定的,有些感性负载,如空调、水泵等,里面的电动机,启动功率是额定功率的3-5倍,所以离网逆变器对过载有特别要求。

从上图看出,采用高频隔离技术的离网逆变器,峰值功率可以达到额定功率的两倍;采用工频隔离技术的离网逆变器,峰值功率可以达到额定功率的三倍。那么,一台3kW的高频离网逆变器,可以带动一台1P的空调(启动功率约5.5kVA),一台12kW的工频离网逆变器,可以带动一台6P的空调(启动功率约33kVA)。逆变器给负载提供启动能量,一部分来自于蓄电池或者光伏组件,超出的部分也是靠逆变器自己(内部的储能元件—电容和电感)来提供。

高频 SPF3000-5000TL HV 工频 SPF 4000-12000T HVM

电容和电感都是一种储能元件,不同的是电容是以电场的形式储存电能,电容的容量越大,储存的电量越多。而电感则是以磁场的形式存储能量,电感器磁芯的磁导率越大,电感量也越大,则能够储存的能量也越多。

电容的原理从其结构便可以看出,如上图,两边各有一块金属板引出两个电极,中间由绝缘物质隔开,在电容两端未施加外部电场的情况下,两个极板上所带的正负电荷处于一种平衡状态。

如上图,当在电容两端施加外电场时,一端极板上开始聚集正电荷,另一端极板则聚集负电荷,随着电容两端的电压不断升高至电源电压,电容充电停止,此时就算断开外电路,电容上的能量也不会消失,原因是正负电荷具有“同性相斥,异性相吸”的特性,两端的电荷相吸引就形成了储存能量的作用。

工频隔离变压器,是指频率为工频(50HZ)的变压器,变压器初级和次级都有电感,与逆变器里面的滤波电感,都可以储存一定的电能。而当电感流过电流时,由于电流会存在磁场,当电流的磁场经过磁芯时,电流磁场会打破“磁畴”的平衡状态,使“磁畴”同时趋向于外部磁场的方向,进而导致磁芯此时会对外表现出磁场。而这个磁芯磁场从无到有的过程,其实就是电感储存磁场的过程。

电感是由漆包线绕制在绝缘骨架或磁芯上形成的元器件。当线圈中有电流通过时,会在周围产生一定的磁场,而当通过的电流含有交流成分时,产生的磁场会不断变化,根据电磁感应原理,变化的磁力线又会在线圈两端产生感应电动势,但此电动势的方向和原来产生的电动势方向相反,并以此来阻碍电流的变化。

由此可以看出,电感的主要作用是阻碍电流的变化。电流增加时,它会阻碍电流的增加,同时通过磁场储存一部分能量;而当电流减小时,它又会阻碍电路中电流的减小,并释放出储存的能量来维持电流。正因为电感有储存能量的特性,所以才有滤波和延迟等功能。

总结:

光伏离网系统,输出功率是由负载决定。当有电动机等感性负载启动时,短时间需要非常大的电流,而这些能量,光伏无法提供,蓄电池也不能提供,锂电池短时间如果过载输出,会引起爆炸。但是,逆变器里的电容、电感、变压器可以储能电量,还可短时间放大几倍输出而不会损坏。

1.离网逆变器为什么能过载几倍

离网逆变器为什么能过载几倍

北极星太阳能光伏网讯:在光伏并网系统中,组件、逆变器、电网构成电气系统。阳光辐射有多大,组件转化太阳能,逆变器就发多大的功率,所以并网逆变器对交流过载没有特别要求,因为逆变器的输出功率基本不会超过组件功率。而在光伏离网系统中,组件、蓄电池、逆变器、负载构成电气系统,逆变器的输出功率,是由负载决定的,有些感性负载,如空调、水泵等,里面的电动机,启动功率是额定功率的3-5倍,所以离网逆变器对过载有特别要求。

从上图看出,采用高频隔离技术的离网逆变器,峰值功率可以达到额定功率的两倍;采用工频隔离技术的离网逆变器,峰值功率可以达到额定功率的三倍。那么,一台3kW的高频离网逆变器,可以带动一台1P的空调(启动功率约5.5kVA),一台12kW的工频离网逆变器,可以带动一台6P的空调(启动功率约33kVA)。逆变器给负载提供启动能量,一部分来自于蓄电池或者光伏组件,超出的部分也是靠逆变器自己(内部的储能元件—电容和电感)来提供。

高频 SPF3000-5000TL HV 工频 SPF 4000-12000T HVM

电容和电感都是一种储能元件,不同的是电容是以电场的形式储存电能,电容的容量越大,储存的电量越多。而电感则是以磁场的形式存储能量,电感器磁芯的磁导率越大,电感量也越大,则能够储存的能量也越多。

电容的原理从其结构便可以看出,如上图,两边各有一块金属板引出两个电极,中间由绝缘物质隔开,在电容两端未施加外部电场的情况下,两个极板上所带的正负电荷处于一种平衡状态。

如上图,当在电容两端施加外电场时,一端极板上开始聚集正电荷,另一端极板则聚集负电荷,随着电容两端的电压不断升高至电源电压,电容充电停止,此时就算断开外电路,电容上的能量也不会消失,原因是正负电荷具有“同性相斥,异性相吸”的特性,两端的电荷相吸引就形成了储存能量的作用。

工频隔离变压器,是指频率为工频(50HZ)的变压器,变压器初级和次级都有电感,与逆变器里面的滤波电感,都可以储存一定的电能。而当电感流过电流时,由于电流会存在磁场,当电流的磁场经过磁芯时,电流磁场会打破“磁畴”的平衡状态,使“磁畴”同时趋向于外部磁场的方向,进而导致磁芯此时会对外表现出磁场。而这个磁芯磁场从无到有的过程,其实就是电感储存磁场的过程。

电感是由漆包线绕制在绝缘骨架或磁芯上形成的元器件。当线圈中有电流通过时,会在周围产生一定的磁场,而当通过的电流含有交流成分时,产生的磁场会不断变化,根据电磁感应原理,变化的磁力线又会在线圈两端产生感应电动势,但此电动势的方向和原来产生的电动势方向相反,并以此来阻碍电流的变化。

由此可以看出,电感的主要作用是阻碍电流的变化。电流增加时,它会阻碍电流的增加,同时通过磁场储存一部分能量;而当电流减小时,它又会阻碍电路中电流的减小,并释放出储存的能量来维持电流。正因为电感有储存能量的特性,所以才有滤波和延迟等功能。

总结:

光伏离网系统,输出功率是由负载决定。当有电动机等感性负载启动时,短时间需要非常大的电流,而这些能量,光伏无法提供,蓄电池也不能提供,锂电池短时间如果过载输出,会引起爆炸。但是,逆变器里的电容、电感、变压器可以储能电量,还可短时间放大几倍输出而不会损坏。

北极星太阳能光伏网讯:在光伏并网系统中,组件、逆变器、电网构成电气系统。阳光辐射有多大,组件转化太阳能,逆变器就发多大的功率,所以并网逆变器对交流过载没有特别要求,因为逆变器的输出功率基本不会超过组件功率。而在光伏离网系统中,组件、蓄电池、逆变器、负载构成电气系统,逆变器的输出功率,是由负载决定的,有些感性负载,如空调、水泵等,里面的电动机,启动功率是额定功率的3-5倍,所以离网逆变器对过载有特别要求。

从上图看出,采用高频隔离技术的离网逆变器,峰值功率可以达到额定功率的两倍;采用工频隔离技术的离网逆变器,峰值功率可以达到额定功率的三倍。那么,一台3kW的高频离网逆变器,可以带动一台1P的空调(启动功率约5.5kVA),一台12kW的工频离网逆变器,可以带动一台6P的空调(启动功率约33kVA)。逆变器给负载提供启动能量,一部分来自于蓄电池或者光伏组件,超出的部分也是靠逆变器自己(内部的储能元件—电容和电感)来提供。

高频 SPF3000-5000TL HV 工频 SPF 4000-12000T HVM

电容和电感都是一种储能元件,不同的是电容是以电场的形式储存电能,电容的容量越大,储存的电量越多。而电感则是以磁场的形式存储能量,电感器磁芯的磁导率越大,电感量也越大,则能够储存的能量也越多。

电容的原理从其结构便可以看出,如上图,两边各有一块金属板引出两个电极,中间由绝缘物质隔开,在电容两端未施加外部电场的情况下,两个极板上所带的正负电荷处于一种平衡状态。

如上图,当在电容两端施加外电场时,一端极板上开始聚集正电荷,另一端极板则聚集负电荷,随着电容两端的电压不断升高至电源电压,电容充电停止,此时就算断开外电路,电容上的能量也不会消失,原因是正负电荷具有“同性相斥,异性相吸”的特性,两端的电荷相吸引就形成了储存能量的作用。

工频隔离变压器,是指频率为工频(50HZ)的变压器,变压器初级和次级都有电感,与逆变器里面的滤波电感,都可以储存一定的电能。而当电感流过电流时,由于电流会存在磁场,当电流的磁场经过磁芯时,电流磁场会打破“磁畴”的平衡状态,使“磁畴”同时趋向于外部磁场的方向,进而导致磁芯此时会对外表现出磁场。而这个磁芯磁场从无到有的过程,其实就是电感储存磁场的过程。

电感是由漆包线绕制在绝缘骨架或磁芯上形成的元器件。当线圈中有电流通过时,会在周围产生一定的磁场,而当通过的电流含有交流成分时,产生的磁场会不断变化,根据电磁感应原理,变化的磁力线又会在线圈两端产生感应电动势,但此电动势的方向和原来产生的电动势方向相反,并以此来阻碍电流的变化。

由此可以看出,电感的主要作用是阻碍电流的变化。电流增加时,它会阻碍电流的增加,同时通过磁场储存一部分能量;而当电流减小时,它又会阻碍电路中电流的减小,并释放出储存的能量来维持电流。正因为电感有储存能量的特性,所以才有滤波和延迟等功能。

总结:

光伏离网系统,输出功率是由负载决定。当有电动机等感性负载启动时,短时间需要非常大的电流,而这些能量,光伏无法提供,蓄电池也不能提供,锂电池短时间如果过载输出,会引起爆炸。但是,逆变器里的电容、电感、变压器可以储能电量,还可短时间放大几倍输出而不会损坏。

北极星太阳能光伏网讯:在光伏并网系统中,组件、逆变器、电网构成电气系统。阳光辐射有多大,组件转化太阳能,逆变器就发多大的功率,所以并网逆变器对交流过载没有特别要求,因为逆变器的输出功率基本不会超过组件功率。而在光伏离网系统中,组件、蓄电池、逆变器、负载构成电气系统,逆变器的输出功率,是由负载决定的,有些感性负载,如空调、水泵等,里面的电动机,启动功率是额定功率的3-5倍,所以离网逆变器对过载有特别要求。

从上图看出,采用高频隔离技术的离网逆变器,峰值功率可以达到额定功率的两倍;采用工频隔离技术的离网逆变器,峰值功率可以达到额定功率的三倍。那么,一台3kW的高频离网逆变器,可以带动一台1P的空调(启动功率约5.5kVA),一台12kW的工频离网逆变器,可以带动一台6P的空调(启动功率约33kVA)。逆变器给负载提供启动能量,一部分来自于蓄电池或者光伏组件,超出的部分也是靠逆变器自己(内部的储能元件—电容和电感)来提供。

高频 SPF3000-5000TL HV 工频 SPF 4000-12000T HVM

电容和电感都是一种储能元件,不同的是电容是以电场的形式储存电能,电容的容量越大,储存的电量越多。而电感则是以磁场的形式存储能量,电感器磁芯的磁导率越大,电感量也越大,则能够储存的能量也越多。

电容的原理从其结构便可以看出,如上图,两边各有一块金属板引出两个电极,中间由绝缘物质隔开,在电容两端未施加外部电场的情况下,两个极板上所带的正负电荷处于一种平衡状态。

如上图,当在电容两端施加外电场时,一端极板上开始聚集正电荷,另一端极板则聚集负电荷,随着电容两端的电压不断升高至电源电压,电容充电停止,此时就算断开外电路,电容上的能量也不会消失,原因是正负电荷具有“同性相斥,异性相吸”的特性,两端的电荷相吸引就形成了储存能量的作用。

工频隔离变压器,是指频率为工频(50HZ)的变压器,变压器初级和次级都有电感,与逆变器里面的滤波电感,都可以储存一定的电能。而当电感流过电流时,由于电流会存在磁场,当电流的磁场经过磁芯时,电流磁场会打破“磁畴”的平衡状态,使“磁畴”同时趋向于外部磁场的方向,进而导致磁芯此时会对外表现出磁场。而这个磁芯磁场从无到有的过程,其实就是电感储存磁场的过程。

电感是由漆包线绕制在绝缘骨架或磁芯上形成的元器件。当线圈中有电流通过时,会在周围产生一定的磁场,而当通过的电流含有交流成分时,产生的磁场会不断变化,根据电磁感应原理,变化的磁力线又会在线圈两端产生感应电动势,但此电动势的方向和原来产生的电动势方向相反,并以此来阻碍电流的变化。

由此可以看出,电感的主要作用是阻碍电流的变化。电流增加时,它会阻碍电流的增加,同时通过磁场储存一部分能量;而当电流减小时,它又会阻碍电路中电流的减小,并释放出储存的能量来维持电流。正因为电感有储存能量的特性,所以才有滤波和延迟等功能。

总结:

光伏离网系统,输出功率是由负载决定。当有电动机等感性负载启动时,短时间需要非常大的电流,而这些能量,光伏无法提供,蓄电池也不能提供,锂电池短时间如果过载输出,会引起爆炸。但是,逆变器里的电容、电感、变压器可以储能电量,还可短时间放大几倍输出而不会损坏。

离网逆变器为什么能过载几倍

北极星太阳能光伏网讯:在光伏并网系统中,组件、逆变器、电网构成电气系统。阳光辐射有多大,组件转化太阳能,逆变器就发多大的功率,所以并网逆变器对交流过载没有特别要求,因为逆变器的输出功率基本不会超过组件功率。而在光伏离网系统中,组件、蓄电池、逆变器、负载构成电气系统,逆变器的输出功率,是由负载决定的,有些感性负载,如空调、水泵等,里面的电动机,启动功率是额定功率的3-5倍,所以离网逆变器对过载有特别要求。

从上图看出,采用高频隔离技术的离网逆变器,峰值功率可以达到额定功率的两倍;采用工频隔离技术的离网逆变器,峰值功率可以达到额定功率的三倍。那么,一台3kW的高频离网逆变器,可以带动一台1P的空调(启动功率约5.5kVA),一台12kW的工频离网逆变器,可以带动一台6P的空调(启动功率约33kVA)。逆变器给负载提供启动能量,一部分来自于蓄电池或者光伏组件,超出的部分也是靠逆变器自己(内部的储能元件—电容和电感)来提供。

高频 SPF3000-5000TL HV 工频 SPF 4000-12000T HVM

电容和电感都是一种储能元件,不同的是电容是以电场的形式储存电能,电容的容量越大,储存的电量越多。而电感则是以磁场的形式存储能量,电感器磁芯的磁导率越大,电感量也越大,则能够储存的能量也越多。

电容的原理从其结构便可以看出,如上图,两边各有一块金属板引出两个电极,中间由绝缘物质隔开,在电容两端未施加外部电场的情况下,两个极板上所带的正负电荷处于一种平衡状态。

如上图,当在电容两端施加外电场时,一端极板上开始聚集正电荷,另一端极板则聚集负电荷,随着电容两端的电压不断升高至电源电压,电容充电停止,此时就算断开外电路,电容上的能量也不会消失,原因是正负电荷具有“同性相斥,异性相吸”的特性,两端的电荷相吸引就形成了储存能量的作用。

工频隔离变压器,是指频率为工频(50HZ)的变压器,变压器初级和次级都有电感,与逆变器里面的滤波电感,都可以储存一定的电能。而当电感流过电流时,由于电流会存在磁场,当电流的磁场经过磁芯时,电流磁场会打破“磁畴”的平衡状态,使“磁畴”同时趋向于外部磁场的方向,进而导致磁芯此时会对外表现出磁场。而这个磁芯磁场从无到有的过程,其实就是电感储存磁场的过程。

电感是由漆包线绕制在绝缘骨架或磁芯上形成的元器件。当线圈中有电流通过时,会在周围产生一定的磁场,而当通过的电流含有交流成分时,产生的磁场会不断变化,根据电磁感应原理,变化的磁力线又会在线圈两端产生感应电动势,但此电动势的方向和原来产生的电动势方向相反,并以此来阻碍电流的变化。

由此可以看出,电感的主要作用是阻碍电流的变化。电流增加时,它会阻碍电流的增加,同时通过磁场储存一部分能量;而当电流减小时,它又会阻碍电路中电流的减小,并释放出储存的能量来维持电流。正因为电感有储存能量的特性,所以才有滤波和延迟等功能。

总结:

光伏离网系统,输出功率是由负载决定。当有电动机等感性负载启动时,短时间需要非常大的电流,而这些能量,光伏无法提供,蓄电池也不能提供,锂电池短时间如果过载输出,会引起爆炸。但是,逆变器里的电容、电感、变压器可以储能电量,还可短时间放大几倍输出而不会损坏。

离网逆变器为什么能过载几倍离网逆变器为什么能过载几倍

北极星太阳能光伏网讯:在光伏并网系统中,组件、逆变器、电网构成电气系统。阳光辐射有多大,组件转化太阳能,逆变器就发多大的功率,所以并网逆变器对交流过载没有特别要求,因为逆变器的输出功率基本不会超过组件功率。而在光伏离网系统中,组件、蓄电池、逆变器、负载构成电气系统,逆变器的输出功率,是由负载决定的,有些感性负载,如空调、水泵等,里面的电动机,启动功率是额定功率的3-5倍,所以离网逆变器对过载有特别要求。

从上图看出,采用高频隔离技术的离网逆变器,峰值功率可以达到额定功率的两倍;采用工频隔离技术的离网逆变器,峰值功率可以达到额定功率的三倍。那么,一台3kW的高频离网逆变器,可以带动一台1P的空调(启动功率约5.5kVA),一台12kW的工频离网逆变器,可以带动一台6P的空调(启动功率约33kVA)。逆变器给负载提供启动能量,一部分来自于蓄电池或者光伏组件,超出的部分也是靠逆变器自己(内部的储能元件—电容和电感)来提供。

高频 SPF3000-5000TL HV 工频 SPF 4000-12000T HVM

电容和电感都是一种储能元件,不同的是电容是以电场的形式储存电能,电容的容量越大,储存的电量越多。而电感则是以磁场的形式存储能量,电感器磁芯的磁导率越大,电感量也越大,则能够储存的能量也越多。

电容的原理从其结构便可以看出,如上图,两边各有一块金属板引出两个电极,中间由绝缘物质隔开,在电容两端未施加外部电场的情况下,两个极板上所带的正负电荷处于一种平衡状态。

如上图,当在电容两端施加外电场时,一端极板上开始聚集正电荷,另一端极板则聚集负电荷,随着电容两端的电压不断升高至电源电压,电容充电停止,此时就算断开外电路,电容上的能量也不会消失,原因是正负电荷具有“同性相斥,异性相吸”的特性,两端的电荷相吸引就形成了储存能量的作用。

工频隔离变压器,是指频率为工频(50HZ)的变压器,变压器初级和次级都有电感,与逆变器里面的滤波电感,都可以储存一定的电能。而当电感流过电流时,由于电流会存在磁场,当电流的磁场经过磁芯时,电流磁场会打破“磁畴”的平衡状态,使“磁畴”同时趋向于外部磁场的方向,进而导致磁芯此时会对外表现出磁场。而这个磁芯磁场从无到有的过程,其实就是电感储存磁场的过程。

电感是由漆包线绕制在绝缘骨架或磁芯上形成的元器件。当线圈中有电流通过时,会在周围产生一定的磁场,而当通过的电流含有交流成分时,产生的磁场会不断变化,根据电磁感应原理,变化的磁力线又会在线圈两端产生感应电动势,但此电动势的方向和原来产生的电动势方向相反,并以此来阻碍电流的变化。

由此可以看出,电感的主要作用是阻碍电流的变化。电流增加时,它会阻碍电流的增加,同时通过磁场储存一部分能量;而当电流减小时,它又会阻碍电路中电流的减小,并释放出储存的能量来维持电流。正因为电感有储存能量的特性,所以才有滤波和延迟等功能。

总结:

光伏离网系统,输出功率是由负载决定。当有电动机等感性负载启动时,短时间需要非常大的电流,而这些能量,光伏无法提供,蓄电池也不能提供,锂电池短时间如果过载输出,会引起爆炸。但是,逆变器里的电容、电感、变压器可以储能电量,还可短时间放大几倍输出而不会损坏。

离网逆变器为什么能过载几倍

北极星太阳能光伏网讯:在光伏并网系统中,组件、逆变器、电网构成电气系统。阳光辐射有多大,组件转化太阳能,逆变器就发多大的功率,所以并网逆变器对交流过载没有特别要求,因为逆变器的输出功率基本不会超过组件功率。而在光伏离网系统中,组件、蓄电池、逆变器、负载构成电气系统,逆变器的输出功率,是由负载决定的,有些感性负载,如空调、水泵等,里面的电动机,启动功率是额定功率的3-5倍,所以离网逆变器对过载有特别要求。

从上图看出,采用高频隔离技术的离网逆变器,峰值功率可以达到额定功率的两倍;采用工频隔离技术的离网逆变器,峰值功率可以达到额定功率的三倍。那么,一台3kW的高频离网逆变器,可以带动一台1P的空调(启动功率约5.5kVA),一台12kW的工频离网逆变器,可以带动一台6P的空调(启动功率约33kVA)。逆变器给负载提供启动能量,一部分来自于蓄电池或者光伏组件,超出的部分也是靠逆变器自己(内部的储能元件—电容和电感)来提供。

高频 SPF3000-5000TL HV 工频 SPF 4000-12000T HVM

电容和电感都是一种储能元件,不同的是电容是以电场的形式储存电能,电容的容量越大,储存的电量越多。而电感则是以磁场的形式存储能量,电感器磁芯的磁导率越大,电感量也越大,则能够储存的能量也越多。

电容的原理从其结构便可以看出,如上图,两边各有一块金属板引出两个电极,中间由绝缘物质隔开,在电容两端未施加外部电场的情况下,两个极板上所带的正负电荷处于一种平衡状态。

如上图,当在电容两端施加外电场时,一端极板上开始聚集正电荷,另一端极板则聚集负电荷,随着电容两端的电压不断升高至电源电压,电容充电停止,此时就算断开外电路,电容上的能量也不会消失,原因是正负电荷具有“同性相斥,异性相吸”的特性,两端的电荷相吸引就形成了储存能量的作用。

工频隔离变压器,是指频率为工频(50HZ)的变压器,变压器初级和次级都有电感,与逆变器里面的滤波电感,都可以储存一定的电能。而当电感流过电流时,由于电流会存在磁场,当电流的磁场经过磁芯时,电流磁场会打破“磁畴”的平衡状态,使“磁畴”同时趋向于外部磁场的方向,进而导致磁芯此时会对外表现出磁场。而这个磁芯磁场从无到有的过程,其实就是电感储存磁场的过程。

电感是由漆包线绕制在绝缘骨架或磁芯上形成的元器件。当线圈中有电流通过时,会在周围产生一定的磁场,而当通过的电流含有交流成分时,产生的磁场会不断变化,根据电磁感应原理,变化的磁力线又会在线圈两端产生感应电动势,但此电动势的方向和原来产生的电动势方向相反,并以此来阻碍电流的变化。

由此可以看出,电感的主要作用是阻碍电流的变化。电流增加时,它会阻碍电流的增加,同时通过磁场储存一部分能量;而当电流减小时,它又会阻碍电路中电流的减小,并释放出储存的能量来维持电流。正因为电感有储存能量的特性,所以才有滤波和延迟等功能。

总结:

光伏离网系统,输出功率是由负载决定。当有电动机等感性负载启动时,短时间需要非常大的电流,而这些能量,光伏无法提供,蓄电池也不能提供,锂电池短时间如果过载输出,会引起爆炸。但是,逆变器里的电容、电感、变压器可以储能电量,还可短时间放大几倍输出而不会损坏。

离网逆变器为什么能过载几倍

北极星太阳能光伏网讯:在光伏并网系统中,组件、逆变器、电网构成电气系统。阳光辐射有多大,组件转化太阳能,逆变器就发多大的功率,所以并网逆变器对交流过载没有特别要求,因为逆变器的输出功率基本不会超过组件功率。而在光伏离网系统中,组件、蓄电池、逆变器、负载构成电气系统,逆变器的输出功率,是由负载决定的,有些感性负载,如空调、水泵等,里面的电动机,启动功率是额定功率的3-5倍,所以离网逆变器对过载有特别要求。

从上图看出,采用高频隔离技术的离网逆变器,峰值功率可以达到额定功率的两倍;采用工频隔离技术的离网逆变器,峰值功率可以达到额定功率的三倍。那么,一台3kW的高频离网逆变器,可以带动一台1P的空调(启动功率约5.5kVA),一台12kW的工频离网逆变器,可以带动一台6P的空调(启动功率约33kVA)。逆变器给负载提供启动能量,一部分来自于蓄电池或者光伏组件,超出的部分也是靠逆变器自己(内部的储能元件—电容和电感)来提供。

高频 SPF3000-5000TL HV 工频 SPF 4000-12000T HVM

电容和电感都是一种储能元件,不同的是电容是以电场的形式储存电能,电容的容量越大,储存的电量越多。而电感则是以磁场的形式存储能量,电感器磁芯的磁导率越大,电感量也越大,则能够储存的能量也越多。

电容的原理从其结构便可以看出,如上图,两边各有一块金属板引出两个电极,中间由绝缘物质隔开,在电容两端未施加外部电场的情况下,两个极板上所带的正负电荷处于一种平衡状态。

如上图,当在电容两端施加外电场时,一端极板上开始聚集正电荷,另一端极板则聚集负电荷,随着电容两端的电压不断升高至电源电压,电容充电停止,此时就算断开外电路,电容上的能量也不会消失,原因是正负电荷具有“同性相斥,异性相吸”的特性,两端的电荷相吸引就形成了储存能量的作用。

工频隔离变压器,是指频率为工频(50HZ)的变压器,变压器初级和次级都有电感,与逆变器里面的滤波电感,都可以储存一定的电能。而当电感流过电流时,由于电流会存在磁场,当电流的磁场经过磁芯时,电流磁场会打破“磁畴”的平衡状态,使“磁畴”同时趋向于外部磁场的方向,进而导致磁芯此时会对外表现出磁场。而这个磁芯磁场从无到有的过程,其实就是电感储存磁场的过程。

电感是由漆包线绕制在绝缘骨架或磁芯上形成的元器件。当线圈中有电流通过时,会在周围产生一定的磁场,而当通过的电流含有交流成分时,产生的磁场会不断变化,根据电磁感应原理,变化的磁力线又会在线圈两端产生感应电动势,但此电动势的方向和原来产生的电动势方向相反,并以此来阻碍电流的变化。

由此可以看出,电感的主要作用是阻碍电流的变化。电流增加时,它会阻碍电流的增加,同时通过磁场储存一部分能量;而当电流减小时,它又会阻碍电路中电流的减小,并释放出储存的能量来维持电流。正因为电感有储存能量的特性,所以才有滤波和延迟等功能。

总结:

光伏离网系统,输出功率是由负载决定。当有电动机等感性负载启动时,短时间需要非常大的电流,而这些能量,光伏无法提供,蓄电池也不能提供,锂电池短时间如果过载输出,会引起爆炸。但是,逆变器里的电容、电感、变压器可以储能电量,还可短时间放大几倍输出而不会损坏。

北极星太阳能光伏网讯:在光伏并网系统中,组件、逆变器、电网构成电气系统。阳光辐射有多大,组件转化太阳能,逆变器就发多大的功率,所以并网逆变器对交流过载没有特别要求,因为逆变器的输出功率基本不会超过组件功率。而在光伏离网系统中,组件、蓄电池、逆变器、负载构成电气系统,逆变器的输出功率,是由负载决定的,有些感性负载,如空调、水泵等,里面的电动机,启动功率是额定功率的3-5倍,所以离网逆变器对过载有特别要求。

从上图看出,采用高频隔离技术的离网逆变器,峰值功率可以达到额定功率的两倍;采用工频隔离技术的离网逆变器,峰值功率可以达到额定功率的三倍。那么,一台3kW的高频离网逆变器,可以带动一台1P的空调(启动功率约5.5kVA),一台12kW的工频离网逆变器,可以带动一台6P的空调(启动功率约33kVA)。逆变器给负载提供启动能量,一部分来自于蓄电池或者光伏组件,超出的部分也是靠逆变器自己(内部的储能元件—电容和电感)来提供。

高频 SPF3000-5000TL HV 工频 SPF 4000-12000T HVM

电容和电感都是一种储能元件,不同的是电容是以电场的形式储存电能,电容的容量越大,储存的电量越多。而电感则是以磁场的形式存储能量,电感器磁芯的磁导率越大,电感量也越大,则能够储存的能量也越多。

电容的原理从其结构便可以看出,如上图,两边各有一块金属板引出两个电极,中间由绝缘物质隔开,在电容两端未施加外部电场的情况下,两个极板上所带的正负电荷处于一种平衡状态。

如上图,当在电容两端施加外电场时,一端极板上开始聚集正电荷,另一端极板则聚集负电荷,随着电容两端的电压不断升高至电源电压,电容充电停止,此时就算断开外电路,电容上的能量也不会消失,原因是正负电荷具有“同性相斥,异性相吸”的特性,两端的电荷相吸引就形成了储存能量的作用。

工频隔离变压器,是指频率为工频(50HZ)的变压器,变压器初级和次级都有电感,与逆变器里面的滤波电感,都可以储存一定的电能。而当电感流过电流时,由于电流会存在磁场,当电流的磁场经过磁芯时,电流磁场会打破“磁畴”的平衡状态,使“磁畴”同时趋向于外部磁场的方向,进而导致磁芯此时会对外表现出磁场。而这个磁芯磁场从无到有的过程,其实就是电感储存磁场的过程。

电感是由漆包线绕制在绝缘骨架或磁芯上形成的元器件。当线圈中有电流通过时,会在周围产生一定的磁场,而当通过的电流含有交流成分时,产生的磁场会不断变化,根据电磁感应原理,变化的磁力线又会在线圈两端产生感应电动势,但此电动势的方向和原来产生的电动势方向相反,并以此来阻碍电流的变化。

由此可以看出,电感的主要作用是阻碍电流的变化。电流增加时,它会阻碍电流的增加,同时通过磁场储存一部分能量;而当电流减小时,它又会阻碍电路中电流的减小,并释放出储存的能量来维持电流。正因为电感有储存能量的特性,所以才有滤波和延迟等功能。

总结:

光伏离网系统,输出功率是由负载决定。当有电动机等感性负载启动时,短时间需要非常大的电流,而这些能量,光伏无法提供,蓄电池也不能提供,锂电池短时间如果过载输出,会引起爆炸。但是,逆变器里的电容、电感、变压器可以储能电量,还可短时间放大几倍输出而不会损坏。

北极星太阳能光伏网讯:在光伏并网系统中,组件、逆变器、电网构成电气系统。阳光辐射有多大,组件转化太阳能,逆变器就发多大的功率,所以并网逆变器对交流过载没有特别要求,因为逆变器的输出功率基本不会超过组件功率。而在光伏离网系统中,组件、蓄电池、逆变器、负载构成电气系统,逆变器的输出功率,是由负载决定的,有些感性负载,如空调、水泵等,里面的电动机,启动功率是额定功率的3-5倍,所以离网逆变器对过载有特别要求。

从上图看出,采用高频隔离技术的离网逆变器,峰值功率可以达到额定功率的两倍;采用工频隔离技术的离网逆变器,峰值功率可以达到额定功率的三倍。那么,一台3kW的高频离网逆变器,可以带动一台1P的空调(启动功率约5.5kVA),一台12kW的工频离网逆变器,可以带动一台6P的空调(启动功率约33kVA)。逆变器给负载提供启动能量,一部分来自于蓄电池或者光伏组件,超出的部分也是靠逆变器自己(内部的储能元件—电容和电感)来提供。

高频 SPF3000-5000TL HV 工频 SPF 4000-12000T HVM

电容和电感都是一种储能元件,不同的是电容是以电场的形式储存电能,电容的容量越大,储存的电量越多。而电感则是以磁场的形式存储能量,电感器磁芯的磁导率越大,电感量也越大,则能够储存的能量也越多。

电容的原理从其结构便可以看出,如上图,两边各有一块金属板引出两个电极,中间由绝缘物质隔开,在电容两端未施加外部电场的情况下,两个极板上所带的正负电荷处于一种平衡状态。

如上图,当在电容两端施加外电场时,一端极板上开始聚集正电荷,另一端极板则聚集负电荷,随着电容两端的电压不断升高至电源电压,电容充电停止,此时就算断开外电路,电容上的能量也不会消失,原因是正负电荷具有“同性相斥,异性相吸”的特性,两端的电荷相吸引就形成了储存能量的作用。

工频隔离变压器,是指频率为工频(50HZ)的变压器,变压器初级和次级都有电感,与逆变器里面的滤波电感,都可以储存一定的电能。而当电感流过电流时,由于电流会存在磁场,当电流的磁场经过磁芯时,电流磁场会打破“磁畴”的平衡状态,使“磁畴”同时趋向于外部磁场的方向,进而导致磁芯此时会对外表现出磁场。而这个磁芯磁场从无到有的过程,其实就是电感储存磁场的过程。

电感是由漆包线绕制在绝缘骨架或磁芯上形成的元器件。当线圈中有电流通过时,会在周围产生一定的磁场,而当通过的电流含有交流成分时,产生的磁场会不断变化,根据电磁感应原理,变化的磁力线又会在线圈两端产生感应电动势,但此电动势的方向和原来产生的电动势方向相反,并以此来阻碍电流的变化。

由此可以看出,电感的主要作用是阻碍电流的变化。电流增加时,它会阻碍电流的增加,同时通过磁场储存一部分能量;而当电流减小时,它又会阻碍电路中电流的减小,并释放出储存的能量来维持电流。正因为电感有储存能量的特性,所以才有滤波和延迟等功能。

总结:

光伏离网系统,输出功率是由负载决定。当有电动机等感性负载启动时,短时间需要非常大的电流,而这些能量,光伏无法提供,蓄电池也不能提供,锂电池短时间如果过载输出,会引起爆炸。但是,逆变器里的电容、电感、变压器可以储能电量,还可短时间放大几倍输出而不会损坏。

2.离网逆变器为什么能过载几倍。

北极星太阳能光伏网讯:在光伏并网系统中,组件、逆变器、电网构成电气系统。阳光辐射有多大,组件转化太阳能,逆变器就发多大的功率,所以并网逆变器对交流过载没有特别要求,因为逆变器的输出功率基本不会超过组件功率。而在光伏离网系统中,组件、蓄电池、逆变器、负载构成电气系统,逆变器的输出功率,是由负载决定的,有些感性负载,如空调、水泵等,里面的电动机,启动功率是额定功率的3-5倍,所以离网逆变器对过载有特别要求。

从上图看出,采用高频隔离技术的离网逆变器,峰值功率可以达到额定功率的两倍;采用工频隔离技术的离网逆变器,峰值功率可以达到额定功率的三倍。那么,一台3kW的高频离网逆变器,可以带动一台1P的空调(启动功率约5.5kVA),一台12kW的工频离网逆变器,可以带动一台6P的空调(启动功率约33kVA)。逆变器给负载提供启动能量,一部分来自于蓄电池或者光伏组件,超出的部分也是靠逆变器自己(内部的储能元件—电容和电感)来提供。

高频 SPF3000-5000TL HV 工频 SPF 4000-12000T HVM

电容和电感都是一种储能元件,不同的是电容是以电场的形式储存电能,电容的容量越大,储存的电量越多。而电感则是以磁场的形式存储能量,电感器磁芯的磁导率越大,电感量也越大,则能够储存的能量也越多。

电容的原理从其结构便可以看出,如上图,两边各有一块金属板引出两个电极,中间由绝缘物质隔开,在电容两端未施加外部电场的情况下,两个极板上所带的正负电荷处于一种平衡状态。

如上图,当在电容两端施加外电场时,一端极板上开始聚集正电荷,另一端极板则聚集负电荷,随着电容两端的电压不断升高至电源电压,电容充电停止,此时就算断开外电路,电容上的能量也不会消失,原因是正负电荷具有“同性相斥,异性相吸”的特性,两端的电荷相吸引就形成了储存能量的作用。

工频隔离变压器,是指频率为工频(50HZ)的变压器,变压器初级和次级都有电感,与逆变器里面的滤波电感,都可以储存一定的电能。而当电感流过电流时,由于电流会存在磁场,当电流的磁场经过磁芯时,电流磁场会打破“磁畴”的平衡状态,使“磁畴”同时趋向于外部磁场的方向,进而导致磁芯此时会对外表现出磁场。而这个磁芯磁场从无到有的过程,其实就是电感储存磁场的过程。

电感是由漆包线绕制在绝缘骨架或磁芯上形成的元器件。当线圈中有电流通过时,会在周围产生一定的磁场,而当通过的电流含有交流成分时,产生的磁场会不断变化,根据电磁感应原理,变化的磁力线又会在线圈两端产生感应电动势,但此电动势的方向和原来产生的电动势方向相反,并以此来阻碍电流的变化。

由此可以看出,电感的主要作用是阻碍电流的变化。电流增加时,它会阻碍电流的增加,同时通过磁场储存一部分能量;而当电流减小时,它又会阻碍电路中电流的减小,并释放出储存的能量来维持电流。正因为电感有储存能量的特性,所以才有滤波和延迟等功能。

总结:

光伏离网系统,输出功率是由负载决定。当有电动机等感性负载启动时,短时间需要非常大的电流,而这些能量,光伏无法提供,蓄电池也不能提供,锂电池短时间如果过载输出,会引起爆炸。但是,逆变器里的电容、电感、变压器可以储能电量,还可短时间放大几倍输出而不会损坏。

离网逆变器为什么能过载几倍

北极星太阳能光伏网讯:在光伏并网系统中,组件、逆变器、电网构成电气系统。阳光辐射有多大,组件转化太阳能,逆变器就发多大的功率,所以并网逆变器对交流过载没有特别要求,因为逆变器的输出功率基本不会超过组件功率。而在光伏离网系统中,组件、蓄电池、逆变器、负载构成电气系统,逆变器的输出功率,是由负载决定的,有些感性负载,如空调、水泵等,里面的电动机,启动功率是额定功率的3-5倍,所以离网逆变器对过载有特别要求。

从上图看出,采用高频隔离技术的离网逆变器,峰值功率可以达到额定功率的两倍;采用工频隔离技术的离网逆变器,峰值功率可以达到额定功率的三倍。那么,一台3kW的高频离网逆变器,可以带动一台1P的空调(启动功率约5.5kVA),一台12kW的工频离网逆变器,可以带动一台6P的空调(启动功率约33kVA)。逆变器给负载提供启动能量,一部分来自于蓄电池或者光伏组件,超出的部分也是靠逆变器自己(内部的储能元件—电容和电感)来提供。

高频 SPF3000-5000TL HV 工频 SPF 4000-12000T HVM

电容和电感都是一种储能元件,不同的是电容是以电场的形式储存电能,电容的容量越大,储存的电量越多。而电感则是以磁场的形式存储能量,电感器磁芯的磁导率越大,电感量也越大,则能够储存的能量也越多。

电容的原理从其结构便可以看出,如上图,两边各有一块金属板引出两个电极,中间由绝缘物质隔开,在电容两端未施加外部电场的情况下,两个极板上所带的正负电荷处于一种平衡状态。

如上图,当在电容两端施加外电场时,一端极板上开始聚集正电荷,另一端极板则聚集负电荷,随着电容两端的电压不断升高至电源电压,电容充电停止,此时就算断开外电路,电容上的能量也不会消失,原因是正负电荷具有“同性相斥,异性相吸”的特性,两端的电荷相吸引就形成了储存能量的作用。

工频隔离变压器,是指频率为工频(50HZ)的变压器,变压器初级和次级都有电感,与逆变器里面的滤波电感,都可以储存一定的电能。而当电感流过电流时,由于电流会存在磁场,当电流的磁场经过磁芯时,电流磁场会打破“磁畴”的平衡状态,使“磁畴”同时趋向于外部磁场的方向,进而导致磁芯此时会对外表现出磁场。而这个磁芯磁场从无到有的过程,其实就是电感储存磁场的过程。

电感是由漆包线绕制在绝缘骨架或磁芯上形成的元器件。当线圈中有电流通过时,会在周围产生一定的磁场,而当通过的电流含有交流成分时,产生的磁场会不断变化,根据电磁感应原理,变化的磁力线又会在线圈两端产生感应电动势,但此电动势的方向和原来产生的电动势方向相反,并以此来阻碍电流的变化。

由此可以看出,电感的主要作用是阻碍电流的变化。电流增加时,它会阻碍电流的增加,同时通过磁场储存一部分能量;而当电流减小时,它又会阻碍电路中电流的减小,并释放出储存的能量来维持电流。正因为电感有储存能量的特性,所以才有滤波和延迟等功能。

总结:

光伏离网系统,输出功率是由负载决定。当有电动机等感性负载启动时,短时间需要非常大的电流,而这些能量,光伏无法提供,蓄电池也不能提供,锂电池短时间如果过载输出,会引起爆炸。但是,逆变器里的电容、电感、变压器可以储能电量,还可短时间放大几倍输出而不会损坏。

离网逆变器为什么能过载几倍

3.离网逆变器为什么能过载几倍。

北极星太阳能光伏网讯:在光伏并网系统中,组件、逆变器、电网构成电气系统。阳光辐射有多大,组件转化太阳能,逆变器就发多大的功率,所以并网逆变器对交流过载没有特别要求,因为逆变器的输出功率基本不会超过组件功率。而在光伏离网系统中,组件、蓄电池、逆变器、负载构成电气系统,逆变器的输出功率,是由负载决定的,有些感性负载,如空调、水泵等,里面的电动机,启动功率是额定功率的3-5倍,所以离网逆变器对过载有特别要求。

从上图看出,采用高频隔离技术的离网逆变器,峰值功率可以达到额定功率的两倍;采用工频隔离技术的离网逆变器,峰值功率可以达到额定功率的三倍。那么,一台3kW的高频离网逆变器,可以带动一台1P的空调(启动功率约5.5kVA),一台12kW的工频离网逆变器,可以带动一台6P的空调(启动功率约33kVA)。逆变器给负载提供启动能量,一部分来自于蓄电池或者光伏组件,超出的部分也是靠逆变器自己(内部的储能元件—电容和电感)来提供。

高频 SPF3000-5000TL HV 工频 SPF 4000-12000T HVM

电容和电感都是一种储能元件,不同的是电容是以电场的形式储存电能,电容的容量越大,储存的电量越多。而电感则是以磁场的形式存储能量,电感器磁芯的磁导率越大,电感量也越大,则能够储存的能量也越多。

电容的原理从其结构便可以看出,如上图,两边各有一块金属板引出两个电极,中间由绝缘物质隔开,在电容两端未施加外部电场的情况下,两个极板上所带的正负电荷处于一种平衡状态。

如上图,当在电容两端施加外电场时,一端极板上开始聚集正电荷,另一端极板则聚集负电荷,随着电容两端的电压不断升高至电源电压,电容充电停止,此时就算断开外电路,电容上的能量也不会消失,原因是正负电荷具有“同性相斥,异性相吸”的特性,两端的电荷相吸引就形成了储存能量的作用。

工频隔离变压器,是指频率为工频(50HZ)的变压器,变压器初级和次级都有电感,与逆变器里面的滤波电感,都可以储存一定的电能。而当电感流过电流时,由于电流会存在磁场,当电流的磁场经过磁芯时,电流磁场会打破“磁畴”的平衡状态,使“磁畴”同时趋向于外部磁场的方向,进而导致磁芯此时会对外表现出磁场。而这个磁芯磁场从无到有的过程,其实就是电感储存磁场的过程。

电感是由漆包线绕制在绝缘骨架或磁芯上形成的元器件。当线圈中有电流通过时,会在周围产生一定的磁场,而当通过的电流含有交流成分时,产生的磁场会不断变化,根据电磁感应原理,变化的磁力线又会在线圈两端产生感应电动势,但此电动势的方向和原来产生的电动势方向相反,并以此来阻碍电流的变化。

由此可以看出,电感的主要作用是阻碍电流的变化。电流增加时,它会阻碍电流的增加,同时通过磁场储存一部分能量;而当电流减小时,它又会阻碍电路中电流的减小,并释放出储存的能量来维持电流。正因为电感有储存能量的特性,所以才有滤波和延迟等功能。

总结:

光伏离网系统,输出功率是由负载决定。当有电动机等感性负载启动时,短时间需要非常大的电流,而这些能量,光伏无法提供,蓄电池也不能提供,锂电池短时间如果过载输出,会引起爆炸。但是,逆变器里的电容、电感、变压器可以储能电量,还可短时间放大几倍输出而不会损坏。

离网逆变器为什么能过载几倍离网逆变器为什么能过载几倍离网逆变器为什么能过载几倍

北极星太阳能光伏网讯:在光伏并网系统中,组件、逆变器、电网构成电气系统。阳光辐射有多大,组件转化太阳能,逆变器就发多大的功率,所以并网逆变器对交流过载没有特别要求,因为逆变器的输出功率基本不会超过组件功率。而在光伏离网系统中,组件、蓄电池、逆变器、负载构成电气系统,逆变器的输出功率,是由负载决定的,有些感性负载,如空调、水泵等,里面的电动机,启动功率是额定功率的3-5倍,所以离网逆变器对过载有特别要求。

从上图看出,采用高频隔离技术的离网逆变器,峰值功率可以达到额定功率的两倍;采用工频隔离技术的离网逆变器,峰值功率可以达到额定功率的三倍。那么,一台3kW的高频离网逆变器,可以带动一台1P的空调(启动功率约5.5kVA),一台12kW的工频离网逆变器,可以带动一台6P的空调(启动功率约33kVA)。逆变器给负载提供启动能量,一部分来自于蓄电池或者光伏组件,超出的部分也是靠逆变器自己(内部的储能元件—电容和电感)来提供。

高频 SPF3000-5000TL HV 工频 SPF 4000-12000T HVM

电容和电感都是一种储能元件,不同的是电容是以电场的形式储存电能,电容的容量越大,储存的电量越多。而电感则是以磁场的形式存储能量,电感器磁芯的磁导率越大,电感量也越大,则能够储存的能量也越多。

电容的原理从其结构便可以看出,如上图,两边各有一块金属板引出两个电极,中间由绝缘物质隔开,在电容两端未施加外部电场的情况下,两个极板上所带的正负电荷处于一种平衡状态。

如上图,当在电容两端施加外电场时,一端极板上开始聚集正电荷,另一端极板则聚集负电荷,随着电容两端的电压不断升高至电源电压,电容充电停止,此时就算断开外电路,电容上的能量也不会消失,原因是正负电荷具有“同性相斥,异性相吸”的特性,两端的电荷相吸引就形成了储存能量的作用。

工频隔离变压器,是指频率为工频(50HZ)的变压器,变压器初级和次级都有电感,与逆变器里面的滤波电感,都可以储存一定的电能。而当电感流过电流时,由于电流会存在磁场,当电流的磁场经过磁芯时,电流磁场会打破“磁畴”的平衡状态,使“磁畴”同时趋向于外部磁场的方向,进而导致磁芯此时会对外表现出磁场。而这个磁芯磁场从无到有的过程,其实就是电感储存磁场的过程。

电感是由漆包线绕制在绝缘骨架或磁芯上形成的元器件。当线圈中有电流通过时,会在周围产生一定的磁场,而当通过的电流含有交流成分时,产生的磁场会不断变化,根据电磁感应原理,变化的磁力线又会在线圈两端产生感应电动势,但此电动势的方向和原来产生的电动势方向相反,并以此来阻碍电流的变化。

由此可以看出,电感的主要作用是阻碍电流的变化。电流增加时,它会阻碍电流的增加,同时通过磁场储存一部分能量;而当电流减小时,它又会阻碍电路中电流的减小,并释放出储存的能量来维持电流。正因为电感有储存能量的特性,所以才有滤波和延迟等功能。

总结:

光伏离网系统,输出功率是由负载决定。当有电动机等感性负载启动时,短时间需要非常大的电流,而这些能量,光伏无法提供,蓄电池也不能提供,锂电池短时间如果过载输出,会引起爆炸。但是,逆变器里的电容、电感、变压器可以储能电量,还可短时间放大几倍输出而不会损坏。

离网逆变器为什么能过载几倍

北极星太阳能光伏网讯:在光伏并网系统中,组件、逆变器、电网构成电气系统。阳光辐射有多大,组件转化太阳能,逆变器就发多大的功率,所以并网逆变器对交流过载没有特别要求,因为逆变器的输出功率基本不会超过组件功率。而在光伏离网系统中,组件、蓄电池、逆变器、负载构成电气系统,逆变器的输出功率,是由负载决定的,有些感性负载,如空调、水泵等,里面的电动机,启动功率是额定功率的3-5倍,所以离网逆变器对过载有特别要求。

从上图看出,采用高频隔离技术的离网逆变器,峰值功率可以达到额定功率的两倍;采用工频隔离技术的离网逆变器,峰值功率可以达到额定功率的三倍。那么,一台3kW的高频离网逆变器,可以带动一台1P的空调(启动功率约5.5kVA),一台12kW的工频离网逆变器,可以带动一台6P的空调(启动功率约33kVA)。逆变器给负载提供启动能量,一部分来自于蓄电池或者光伏组件,超出的部分也是靠逆变器自己(内部的储能元件—电容和电感)来提供。

高频 SPF3000-5000TL HV 工频 SPF 4000-12000T HVM

电容和电感都是一种储能元件,不同的是电容是以电场的形式储存电能,电容的容量越大,储存的电量越多。而电感则是以磁场的形式存储能量,电感器磁芯的磁导率越大,电感量也越大,则能够储存的能量也越多。

电容的原理从其结构便可以看出,如上图,两边各有一块金属板引出两个电极,中间由绝缘物质隔开,在电容两端未施加外部电场的情况下,两个极板上所带的正负电荷处于一种平衡状态。

如上图,当在电容两端施加外电场时,一端极板上开始聚集正电荷,另一端极板则聚集负电荷,随着电容两端的电压不断升高至电源电压,电容充电停止,此时就算断开外电路,电容上的能量也不会消失,原因是正负电荷具有“同性相斥,异性相吸”的特性,两端的电荷相吸引就形成了储存能量的作用。

工频隔离变压器,是指频率为工频(50HZ)的变压器,变压器初级和次级都有电感,与逆变器里面的滤波电感,都可以储存一定的电能。而当电感流过电流时,由于电流会存在磁场,当电流的磁场经过磁芯时,电流磁场会打破“磁畴”的平衡状态,使“磁畴”同时趋向于外部磁场的方向,进而导致磁芯此时会对外表现出磁场。而这个磁芯磁场从无到有的过程,其实就是电感储存磁场的过程。

电感是由漆包线绕制在绝缘骨架或磁芯上形成的元器件。当线圈中有电流通过时,会在周围产生一定的磁场,而当通过的电流含有交流成分时,产生的磁场会不断变化,根据电磁感应原理,变化的磁力线又会在线圈两端产生感应电动势,但此电动势的方向和原来产生的电动势方向相反,并以此来阻碍电流的变化。

由此可以看出,电感的主要作用是阻碍电流的变化。电流增加时,它会阻碍电流的增加,同时通过磁场储存一部分能量;而当电流减小时,它又会阻碍电路中电流的减小,并释放出储存的能量来维持电流。正因为电感有储存能量的特性,所以才有滤波和延迟等功能。

总结:

光伏离网系统,输出功率是由负载决定。当有电动机等感性负载启动时,短时间需要非常大的电流,而这些能量,光伏无法提供,蓄电池也不能提供,锂电池短时间如果过载输出,会引起爆炸。但是,逆变器里的电容、电感、变压器可以储能电量,还可短时间放大几倍输出而不会损坏。

4.

北极星太阳能光伏网讯:在光伏并网系统中,组件、逆变器、电网构成电气系统。阳光辐射有多大,组件转化太阳能,逆变器就发多大的功率,所以并网逆变器对交流过载没有特别要求,因为逆变器的输出功率基本不会超过组件功率。而在光伏离网系统中,组件、蓄电池、逆变器、负载构成电气系统,逆变器的输出功率,是由负载决定的,有些感性负载,如空调、水泵等,里面的电动机,启动功率是额定功率的3-5倍,所以离网逆变器对过载有特别要求。

从上图看出,采用高频隔离技术的离网逆变器,峰值功率可以达到额定功率的两倍;采用工频隔离技术的离网逆变器,峰值功率可以达到额定功率的三倍。那么,一台3kW的高频离网逆变器,可以带动一台1P的空调(启动功率约5.5kVA),一台12kW的工频离网逆变器,可以带动一台6P的空调(启动功率约33kVA)。逆变器给负载提供启动能量,一部分来自于蓄电池或者光伏组件,超出的部分也是靠逆变器自己(内部的储能元件—电容和电感)来提供。

高频 SPF3000-5000TL HV 工频 SPF 4000-12000T HVM

电容和电感都是一种储能元件,不同的是电容是以电场的形式储存电能,电容的容量越大,储存的电量越多。而电感则是以磁场的形式存储能量,电感器磁芯的磁导率越大,电感量也越大,则能够储存的能量也越多。

电容的原理从其结构便可以看出,如上图,两边各有一块金属板引出两个电极,中间由绝缘物质隔开,在电容两端未施加外部电场的情况下,两个极板上所带的正负电荷处于一种平衡状态。

如上图,当在电容两端施加外电场时,一端极板上开始聚集正电荷,另一端极板则聚集负电荷,随着电容两端的电压不断升高至电源电压,电容充电停止,此时就算断开外电路,电容上的能量也不会消失,原因是正负电荷具有“同性相斥,异性相吸”的特性,两端的电荷相吸引就形成了储存能量的作用。

工频隔离变压器,是指频率为工频(50HZ)的变压器,变压器初级和次级都有电感,与逆变器里面的滤波电感,都可以储存一定的电能。而当电感流过电流时,由于电流会存在磁场,当电流的磁场经过磁芯时,电流磁场会打破“磁畴”的平衡状态,使“磁畴”同时趋向于外部磁场的方向,进而导致磁芯此时会对外表现出磁场。而这个磁芯磁场从无到有的过程,其实就是电感储存磁场的过程。

电感是由漆包线绕制在绝缘骨架或磁芯上形成的元器件。当线圈中有电流通过时,会在周围产生一定的磁场,而当通过的电流含有交流成分时,产生的磁场会不断变化,根据电磁感应原理,变化的磁力线又会在线圈两端产生感应电动势,但此电动势的方向和原来产生的电动势方向相反,并以此来阻碍电流的变化。

由此可以看出,电感的主要作用是阻碍电流的变化。电流增加时,它会阻碍电流的增加,同时通过磁场储存一部分能量;而当电流减小时,它又会阻碍电路中电流的减小,并释放出储存的能量来维持电流。正因为电感有储存能量的特性,所以才有滤波和延迟等功能。

总结:

光伏离网系统,输出功率是由负载决定。当有电动机等感性负载启动时,短时间需要非常大的电流,而这些能量,光伏无法提供,蓄电池也不能提供,锂电池短时间如果过载输出,会引起爆炸。但是,逆变器里的电容、电感、变压器可以储能电量,还可短时间放大几倍输出而不会损坏。

离网逆变器为什么能过载几倍

北极星太阳能光伏网讯:在光伏并网系统中,组件、逆变器、电网构成电气系统。阳光辐射有多大,组件转化太阳能,逆变器就发多大的功率,所以并网逆变器对交流过载没有特别要求,因为逆变器的输出功率基本不会超过组件功率。而在光伏离网系统中,组件、蓄电池、逆变器、负载构成电气系统,逆变器的输出功率,是由负载决定的,有些感性负载,如空调、水泵等,里面的电动机,启动功率是额定功率的3-5倍,所以离网逆变器对过载有特别要求。

从上图看出,采用高频隔离技术的离网逆变器,峰值功率可以达到额定功率的两倍;采用工频隔离技术的离网逆变器,峰值功率可以达到额定功率的三倍。那么,一台3kW的高频离网逆变器,可以带动一台1P的空调(启动功率约5.5kVA),一台12kW的工频离网逆变器,可以带动一台6P的空调(启动功率约33kVA)。逆变器给负载提供启动能量,一部分来自于蓄电池或者光伏组件,超出的部分也是靠逆变器自己(内部的储能元件—电容和电感)来提供。

高频 SPF3000-5000TL HV 工频 SPF 4000-12000T HVM

电容和电感都是一种储能元件,不同的是电容是以电场的形式储存电能,电容的容量越大,储存的电量越多。而电感则是以磁场的形式存储能量,电感器磁芯的磁导率越大,电感量也越大,则能够储存的能量也越多。

电容的原理从其结构便可以看出,如上图,两边各有一块金属板引出两个电极,中间由绝缘物质隔开,在电容两端未施加外部电场的情况下,两个极板上所带的正负电荷处于一种平衡状态。

如上图,当在电容两端施加外电场时,一端极板上开始聚集正电荷,另一端极板则聚集负电荷,随着电容两端的电压不断升高至电源电压,电容充电停止,此时就算断开外电路,电容上的能量也不会消失,原因是正负电荷具有“同性相斥,异性相吸”的特性,两端的电荷相吸引就形成了储存能量的作用。

工频隔离变压器,是指频率为工频(50HZ)的变压器,变压器初级和次级都有电感,与逆变器里面的滤波电感,都可以储存一定的电能。而当电感流过电流时,由于电流会存在磁场,当电流的磁场经过磁芯时,电流磁场会打破“磁畴”的平衡状态,使“磁畴”同时趋向于外部磁场的方向,进而导致磁芯此时会对外表现出磁场。而这个磁芯磁场从无到有的过程,其实就是电感储存磁场的过程。

电感是由漆包线绕制在绝缘骨架或磁芯上形成的元器件。当线圈中有电流通过时,会在周围产生一定的磁场,而当通过的电流含有交流成分时,产生的磁场会不断变化,根据电磁感应原理,变化的磁力线又会在线圈两端产生感应电动势,但此电动势的方向和原来产生的电动势方向相反,并以此来阻碍电流的变化。

由此可以看出,电感的主要作用是阻碍电流的变化。电流增加时,它会阻碍电流的增加,同时通过磁场储存一部分能量;而当电流减小时,它又会阻碍电路中电流的减小,并释放出储存的能量来维持电流。正因为电感有储存能量的特性,所以才有滤波和延迟等功能。

总结:

光伏离网系统,输出功率是由负载决定。当有电动机等感性负载启动时,短时间需要非常大的电流,而这些能量,光伏无法提供,蓄电池也不能提供,锂电池短时间如果过载输出,会引起爆炸。但是,逆变器里的电容、电感、变压器可以储能电量,还可短时间放大几倍输出而不会损坏。

北极星太阳能光伏网讯:在光伏并网系统中,组件、逆变器、电网构成电气系统。阳光辐射有多大,组件转化太阳能,逆变器就发多大的功率,所以并网逆变器对交流过载没有特别要求,因为逆变器的输出功率基本不会超过组件功率。而在光伏离网系统中,组件、蓄电池、逆变器、负载构成电气系统,逆变器的输出功率,是由负载决定的,有些感性负载,如空调、水泵等,里面的电动机,启动功率是额定功率的3-5倍,所以离网逆变器对过载有特别要求。

从上图看出,采用高频隔离技术的离网逆变器,峰值功率可以达到额定功率的两倍;采用工频隔离技术的离网逆变器,峰值功率可以达到额定功率的三倍。那么,一台3kW的高频离网逆变器,可以带动一台1P的空调(启动功率约5.5kVA),一台12kW的工频离网逆变器,可以带动一台6P的空调(启动功率约33kVA)。逆变器给负载提供启动能量,一部分来自于蓄电池或者光伏组件,超出的部分也是靠逆变器自己(内部的储能元件—电容和电感)来提供。

高频 SPF3000-5000TL HV 工频 SPF 4000-12000T HVM

电容和电感都是一种储能元件,不同的是电容是以电场的形式储存电能,电容的容量越大,储存的电量越多。而电感则是以磁场的形式存储能量,电感器磁芯的磁导率越大,电感量也越大,则能够储存的能量也越多。

电容的原理从其结构便可以看出,如上图,两边各有一块金属板引出两个电极,中间由绝缘物质隔开,在电容两端未施加外部电场的情况下,两个极板上所带的正负电荷处于一种平衡状态。

如上图,当在电容两端施加外电场时,一端极板上开始聚集正电荷,另一端极板则聚集负电荷,随着电容两端的电压不断升高至电源电压,电容充电停止,此时就算断开外电路,电容上的能量也不会消失,原因是正负电荷具有“同性相斥,异性相吸”的特性,两端的电荷相吸引就形成了储存能量的作用。

工频隔离变压器,是指频率为工频(50HZ)的变压器,变压器初级和次级都有电感,与逆变器里面的滤波电感,都可以储存一定的电能。而当电感流过电流时,由于电流会存在磁场,当电流的磁场经过磁芯时,电流磁场会打破“磁畴”的平衡状态,使“磁畴”同时趋向于外部磁场的方向,进而导致磁芯此时会对外表现出磁场。而这个磁芯磁场从无到有的过程,其实就是电感储存磁场的过程。

电感是由漆包线绕制在绝缘骨架或磁芯上形成的元器件。当线圈中有电流通过时,会在周围产生一定的磁场,而当通过的电流含有交流成分时,产生的磁场会不断变化,根据电磁感应原理,变化的磁力线又会在线圈两端产生感应电动势,但此电动势的方向和原来产生的电动势方向相反,并以此来阻碍电流的变化。

由此可以看出,电感的主要作用是阻碍电流的变化。电流增加时,它会阻碍电流的增加,同时通过磁场储存一部分能量;而当电流减小时,它又会阻碍电路中电流的减小,并释放出储存的能量来维持电流。正因为电感有储存能量的特性,所以才有滤波和延迟等功能。

总结:

光伏离网系统,输出功率是由负载决定。当有电动机等感性负载启动时,短时间需要非常大的电流,而这些能量,光伏无法提供,蓄电池也不能提供,锂电池短时间如果过载输出,会引起爆炸。但是,逆变器里的电容、电感、变压器可以储能电量,还可短时间放大几倍输出而不会损坏。

离网逆变器为什么能过载几倍离网逆变器为什么能过载几倍

北极星太阳能光伏网讯:在光伏并网系统中,组件、逆变器、电网构成电气系统。阳光辐射有多大,组件转化太阳能,逆变器就发多大的功率,所以并网逆变器对交流过载没有特别要求,因为逆变器的输出功率基本不会超过组件功率。而在光伏离网系统中,组件、蓄电池、逆变器、负载构成电气系统,逆变器的输出功率,是由负载决定的,有些感性负载,如空调、水泵等,里面的电动机,启动功率是额定功率的3-5倍,所以离网逆变器对过载有特别要求。

从上图看出,采用高频隔离技术的离网逆变器,峰值功率可以达到额定功率的两倍;采用工频隔离技术的离网逆变器,峰值功率可以达到额定功率的三倍。那么,一台3kW的高频离网逆变器,可以带动一台1P的空调(启动功率约5.5kVA),一台12kW的工频离网逆变器,可以带动一台6P的空调(启动功率约33kVA)。逆变器给负载提供启动能量,一部分来自于蓄电池或者光伏组件,超出的部分也是靠逆变器自己(内部的储能元件—电容和电感)来提供。

高频 SPF3000-5000TL HV 工频 SPF 4000-12000T HVM

电容和电感都是一种储能元件,不同的是电容是以电场的形式储存电能,电容的容量越大,储存的电量越多。而电感则是以磁场的形式存储能量,电感器磁芯的磁导率越大,电感量也越大,则能够储存的能量也越多。

电容的原理从其结构便可以看出,如上图,两边各有一块金属板引出两个电极,中间由绝缘物质隔开,在电容两端未施加外部电场的情况下,两个极板上所带的正负电荷处于一种平衡状态。

如上图,当在电容两端施加外电场时,一端极板上开始聚集正电荷,另一端极板则聚集负电荷,随着电容两端的电压不断升高至电源电压,电容充电停止,此时就算断开外电路,电容上的能量也不会消失,原因是正负电荷具有“同性相斥,异性相吸”的特性,两端的电荷相吸引就形成了储存能量的作用。

工频隔离变压器,是指频率为工频(50HZ)的变压器,变压器初级和次级都有电感,与逆变器里面的滤波电感,都可以储存一定的电能。而当电感流过电流时,由于电流会存在磁场,当电流的磁场经过磁芯时,电流磁场会打破“磁畴”的平衡状态,使“磁畴”同时趋向于外部磁场的方向,进而导致磁芯此时会对外表现出磁场。而这个磁芯磁场从无到有的过程,其实就是电感储存磁场的过程。

电感是由漆包线绕制在绝缘骨架或磁芯上形成的元器件。当线圈中有电流通过时,会在周围产生一定的磁场,而当通过的电流含有交流成分时,产生的磁场会不断变化,根据电磁感应原理,变化的磁力线又会在线圈两端产生感应电动势,但此电动势的方向和原来产生的电动势方向相反,并以此来阻碍电流的变化。

由此可以看出,电感的主要作用是阻碍电流的变化。电流增加时,它会阻碍电流的增加,同时通过磁场储存一部分能量;而当电流减小时,它又会阻碍电路中电流的减小,并释放出储存的能量来维持电流。正因为电感有储存能量的特性,所以才有滤波和延迟等功能。

总结:

光伏离网系统,输出功率是由负载决定。当有电动机等感性负载启动时,短时间需要非常大的电流,而这些能量,光伏无法提供,蓄电池也不能提供,锂电池短时间如果过载输出,会引起爆炸。但是,逆变器里的电容、电感、变压器可以储能电量,还可短时间放大几倍输出而不会损坏。

离网逆变器为什么能过载几倍

北极星太阳能光伏网讯:在光伏并网系统中,组件、逆变器、电网构成电气系统。阳光辐射有多大,组件转化太阳能,逆变器就发多大的功率,所以并网逆变器对交流过载没有特别要求,因为逆变器的输出功率基本不会超过组件功率。而在光伏离网系统中,组件、蓄电池、逆变器、负载构成电气系统,逆变器的输出功率,是由负载决定的,有些感性负载,如空调、水泵等,里面的电动机,启动功率是额定功率的3-5倍,所以离网逆变器对过载有特别要求。

从上图看出,采用高频隔离技术的离网逆变器,峰值功率可以达到额定功率的两倍;采用工频隔离技术的离网逆变器,峰值功率可以达到额定功率的三倍。那么,一台3kW的高频离网逆变器,可以带动一台1P的空调(启动功率约5.5kVA),一台12kW的工频离网逆变器,可以带动一台6P的空调(启动功率约33kVA)。逆变器给负载提供启动能量,一部分来自于蓄电池或者光伏组件,超出的部分也是靠逆变器自己(内部的储能元件—电容和电感)来提供。

高频 SPF3000-5000TL HV 工频 SPF 4000-12000T HVM

电容和电感都是一种储能元件,不同的是电容是以电场的形式储存电能,电容的容量越大,储存的电量越多。而电感则是以磁场的形式存储能量,电感器磁芯的磁导率越大,电感量也越大,则能够储存的能量也越多。

电容的原理从其结构便可以看出,如上图,两边各有一块金属板引出两个电极,中间由绝缘物质隔开,在电容两端未施加外部电场的情况下,两个极板上所带的正负电荷处于一种平衡状态。

如上图,当在电容两端施加外电场时,一端极板上开始聚集正电荷,另一端极板则聚集负电荷,随着电容两端的电压不断升高至电源电压,电容充电停止,此时就算断开外电路,电容上的能量也不会消失,原因是正负电荷具有“同性相斥,异性相吸”的特性,两端的电荷相吸引就形成了储存能量的作用。

工频隔离变压器,是指频率为工频(50HZ)的变压器,变压器初级和次级都有电感,与逆变器里面的滤波电感,都可以储存一定的电能。而当电感流过电流时,由于电流会存在磁场,当电流的磁场经过磁芯时,电流磁场会打破“磁畴”的平衡状态,使“磁畴”同时趋向于外部磁场的方向,进而导致磁芯此时会对外表现出磁场。而这个磁芯磁场从无到有的过程,其实就是电感储存磁场的过程。

电感是由漆包线绕制在绝缘骨架或磁芯上形成的元器件。当线圈中有电流通过时,会在周围产生一定的磁场,而当通过的电流含有交流成分时,产生的磁场会不断变化,根据电磁感应原理,变化的磁力线又会在线圈两端产生感应电动势,但此电动势的方向和原来产生的电动势方向相反,并以此来阻碍电流的变化。

由此可以看出,电感的主要作用是阻碍电流的变化。电流增加时,它会阻碍电流的增加,同时通过磁场储存一部分能量;而当电流减小时,它又会阻碍电路中电流的减小,并释放出储存的能量来维持电流。正因为电感有储存能量的特性,所以才有滤波和延迟等功能。

总结:

光伏离网系统,输出功率是由负载决定。当有电动机等感性负载启动时,短时间需要非常大的电流,而这些能量,光伏无法提供,蓄电池也不能提供,锂电池短时间如果过载输出,会引起爆炸。但是,逆变器里的电容、电感、变压器可以储能电量,还可短时间放大几倍输出而不会损坏。

北极星太阳能光伏网讯:在光伏并网系统中,组件、逆变器、电网构成电气系统。阳光辐射有多大,组件转化太阳能,逆变器就发多大的功率,所以并网逆变器对交流过载没有特别要求,因为逆变器的输出功率基本不会超过组件功率。而在光伏离网系统中,组件、蓄电池、逆变器、负载构成电气系统,逆变器的输出功率,是由负载决定的,有些感性负载,如空调、水泵等,里面的电动机,启动功率是额定功率的3-5倍,所以离网逆变器对过载有特别要求。

从上图看出,采用高频隔离技术的离网逆变器,峰值功率可以达到额定功率的两倍;采用工频隔离技术的离网逆变器,峰值功率可以达到额定功率的三倍。那么,一台3kW的高频离网逆变器,可以带动一台1P的空调(启动功率约5.5kVA),一台12kW的工频离网逆变器,可以带动一台6P的空调(启动功率约33kVA)。逆变器给负载提供启动能量,一部分来自于蓄电池或者光伏组件,超出的部分也是靠逆变器自己(内部的储能元件—电容和电感)来提供。

高频 SPF3000-5000TL HV 工频 SPF 4000-12000T HVM

电容和电感都是一种储能元件,不同的是电容是以电场的形式储存电能,电容的容量越大,储存的电量越多。而电感则是以磁场的形式存储能量,电感器磁芯的磁导率越大,电感量也越大,则能够储存的能量也越多。

电容的原理从其结构便可以看出,如上图,两边各有一块金属板引出两个电极,中间由绝缘物质隔开,在电容两端未施加外部电场的情况下,两个极板上所带的正负电荷处于一种平衡状态。

如上图,当在电容两端施加外电场时,一端极板上开始聚集正电荷,另一端极板则聚集负电荷,随着电容两端的电压不断升高至电源电压,电容充电停止,此时就算断开外电路,电容上的能量也不会消失,原因是正负电荷具有“同性相斥,异性相吸”的特性,两端的电荷相吸引就形成了储存能量的作用。

工频隔离变压器,是指频率为工频(50HZ)的变压器,变压器初级和次级都有电感,与逆变器里面的滤波电感,都可以储存一定的电能。而当电感流过电流时,由于电流会存在磁场,当电流的磁场经过磁芯时,电流磁场会打破“磁畴”的平衡状态,使“磁畴”同时趋向于外部磁场的方向,进而导致磁芯此时会对外表现出磁场。而这个磁芯磁场从无到有的过程,其实就是电感储存磁场的过程。

电感是由漆包线绕制在绝缘骨架或磁芯上形成的元器件。当线圈中有电流通过时,会在周围产生一定的磁场,而当通过的电流含有交流成分时,产生的磁场会不断变化,根据电磁感应原理,变化的磁力线又会在线圈两端产生感应电动势,但此电动势的方向和原来产生的电动势方向相反,并以此来阻碍电流的变化。

由此可以看出,电感的主要作用是阻碍电流的变化。电流增加时,它会阻碍电流的增加,同时通过磁场储存一部分能量;而当电流减小时,它又会阻碍电路中电流的减小,并释放出储存的能量来维持电流。正因为电感有储存能量的特性,所以才有滤波和延迟等功能。

总结:

光伏离网系统,输出功率是由负载决定。当有电动机等感性负载启动时,短时间需要非常大的电流,而这些能量,光伏无法提供,蓄电池也不能提供,锂电池短时间如果过载输出,会引起爆炸。但是,逆变器里的电容、电感、变压器可以储能电量,还可短时间放大几倍输出而不会损坏。

离网逆变器为什么能过载几倍离网逆变器为什么能过载几倍。12bet

展开全文
相关文章
bet007

离网逆变器为什么能过载几倍

环亚官方

北极星太阳能光伏网讯:在光伏并网系统中,组件、逆变器、电网构成电气系统。阳光辐射有多大,组件转化太阳能,逆变器就发多大的功率,所以并网逆变器对交流过载没有特别要求,因为逆变器的输出功率基本不会超过组件功率。而在光伏离网系统中,组件、蓄电池、逆变器、负载构成电气系统,逆变器的输出功率,是由负载决定的,有些感性负载,如空调、水泵等,里面的电动机,启动功率是额定功率的3-5倍,所以离网逆变器对过载有特别要求。

从上图看出,采用高频隔离技术的离网逆变器,峰值功率可以达到额定功率的两倍;采用工频隔离技术的离网逆变器,峰值功率可以达到额定功率的三倍。那么,一台3kW的高频离网逆变器,可以带动一台1P的空调(启动功率约5.5kVA),一台12kW的工频离网逆变器,可以带动一台6P的空调(启动功率约33kVA)。逆变器给负载提供启动能量,一部分来自于蓄电池或者光伏组件,超出的部分也是靠逆变器自己(内部的储能元件—电容和电感)来提供。

高频 SPF3000-5000TL HV 工频 SPF 4000-12000T HVM

电容和电感都是一种储能元件,不同的是电容是以电场的形式储存电能,电容的容量越大,储存的电量越多。而电感则是以磁场的形式存储能量,电感器磁芯的磁导率越大,电感量也越大,则能够储存的能量也越多。

电容的原理从其结构便可以看出,如上图,两边各有一块金属板引出两个电极,中间由绝缘物质隔开,在电容两端未施加外部电场的情况下,两个极板上所带的正负电荷处于一种平衡状态。

如上图,当在电容两端施加外电场时,一端极板上开始聚集正电荷,另一端极板则聚集负电荷,随着电容两端的电压不断升高至电源电压,电容充电停止,此时就算断开外电路,电容上的能量也不会消失,原因是正负电荷具有“同性相斥,异性相吸”的特性,两端的电荷相吸引就形成了储存能量的作用。

工频隔离变压器,是指频率为工频(50HZ)的变压器,变压器初级和次级都有电感,与逆变器里面的滤波电感,都可以储存一定的电能。而当电感流过电流时,由于电流会存在磁场,当电流的磁场经过磁芯时,电流磁场会打破“磁畴”的平衡状态,使“磁畴”同时趋向于外部磁场的方向,进而导致磁芯此时会对外表现出磁场。而这个磁芯磁场从无到有的过程,其实就是电感储存磁场的过程。

电感是由漆包线绕制在绝缘骨架或磁芯上形成的元器件。当线圈中有电流通过时,会在周围产生一定的磁场,而当通过的电流含有交流成分时,产生的磁场会不断变化,根据电磁感应原理,变化的磁力线又会在线圈两端产生感应电动势,但此电动势的方向和原来产生的电动势方向相反,并以此来阻碍电流的变化。

由此可以看出,电感的主要作用是阻碍电流的变化。电流增加时,它会阻碍电流的增加,同时通过磁场储存一部分能量;而当电流减小时,它又会阻碍电路中电流的减小,并释放出储存的能量来维持电流。正因为电感有储存能量的特性,所以才有滤波和延迟等功能。

总结:

光伏离网系统,输出功率是由负载决定。当有电动机等感性负载启动时,短时间需要非常大的电流,而这些能量,光伏无法提供,蓄电池也不能提供,锂电池短时间如果过载输出,会引起爆炸。但是,逆变器里的电容、电感、变压器可以储能电量,还可短时间放大几倍输出而不会损坏。

....

亲朋棋牌

北极星太阳能光伏网讯:在光伏并网系统中,组件、逆变器、电网构成电气系统。阳光辐射有多大,组件转化太阳能,逆变器就发多大的功率,所以并网逆变器对交流过载没有特别要求,因为逆变器的输出功率基本不会超过组件功率。而在光伏离网系统中,组件、蓄电池、逆变器、负载构成电气系统,逆变器的输出功率,是由负载决定的,有些感性负载,如空调、水泵等,里面的电动机,启动功率是额定功率的3-5倍,所以离网逆变器对过载有特别要求。

从上图看出,采用高频隔离技术的离网逆变器,峰值功率可以达到额定功率的两倍;采用工频隔离技术的离网逆变器,峰值功率可以达到额定功率的三倍。那么,一台3kW的高频离网逆变器,可以带动一台1P的空调(启动功率约5.5kVA),一台12kW的工频离网逆变器,可以带动一台6P的空调(启动功率约33kVA)。逆变器给负载提供启动能量,一部分来自于蓄电池或者光伏组件,超出的部分也是靠逆变器自己(内部的储能元件—电容和电感)来提供。

高频 SPF3000-5000TL HV 工频 SPF 4000-12000T HVM

电容和电感都是一种储能元件,不同的是电容是以电场的形式储存电能,电容的容量越大,储存的电量越多。而电感则是以磁场的形式存储能量,电感器磁芯的磁导率越大,电感量也越大,则能够储存的能量也越多。

电容的原理从其结构便可以看出,如上图,两边各有一块金属板引出两个电极,中间由绝缘物质隔开,在电容两端未施加外部电场的情况下,两个极板上所带的正负电荷处于一种平衡状态。

如上图,当在电容两端施加外电场时,一端极板上开始聚集正电荷,另一端极板则聚集负电荷,随着电容两端的电压不断升高至电源电压,电容充电停止,此时就算断开外电路,电容上的能量也不会消失,原因是正负电荷具有“同性相斥,异性相吸”的特性,两端的电荷相吸引就形成了储存能量的作用。

工频隔离变压器,是指频率为工频(50HZ)的变压器,变压器初级和次级都有电感,与逆变器里面的滤波电感,都可以储存一定的电能。而当电感流过电流时,由于电流会存在磁场,当电流的磁场经过磁芯时,电流磁场会打破“磁畴”的平衡状态,使“磁畴”同时趋向于外部磁场的方向,进而导致磁芯此时会对外表现出磁场。而这个磁芯磁场从无到有的过程,其实就是电感储存磁场的过程。

电感是由漆包线绕制在绝缘骨架或磁芯上形成的元器件。当线圈中有电流通过时,会在周围产生一定的磁场,而当通过的电流含有交流成分时,产生的磁场会不断变化,根据电磁感应原理,变化的磁力线又会在线圈两端产生感应电动势,但此电动势的方向和原来产生的电动势方向相反,并以此来阻碍电流的变化。

由此可以看出,电感的主要作用是阻碍电流的变化。电流增加时,它会阻碍电流的增加,同时通过磁场储存一部分能量;而当电流减小时,它又会阻碍电路中电流的减小,并释放出储存的能量来维持电流。正因为电感有储存能量的特性,所以才有滤波和延迟等功能。

总结:

光伏离网系统,输出功率是由负载决定。当有电动机等感性负载启动时,短时间需要非常大的电流,而这些能量,光伏无法提供,蓄电池也不能提供,锂电池短时间如果过载输出,会引起爆炸。但是,逆变器里的电容、电感、变压器可以储能电量,还可短时间放大几倍输出而不会损坏。

....

皇冠即时比分

北极星太阳能光伏网讯:在光伏并网系统中,组件、逆变器、电网构成电气系统。阳光辐射有多大,组件转化太阳能,逆变器就发多大的功率,所以并网逆变器对交流过载没有特别要求,因为逆变器的输出功率基本不会超过组件功率。而在光伏离网系统中,组件、蓄电池、逆变器、负载构成电气系统,逆变器的输出功率,是由负载决定的,有些感性负载,如空调、水泵等,里面的电动机,启动功率是额定功率的3-5倍,所以离网逆变器对过载有特别要求。

从上图看出,采用高频隔离技术的离网逆变器,峰值功率可以达到额定功率的两倍;采用工频隔离技术的离网逆变器,峰值功率可以达到额定功率的三倍。那么,一台3kW的高频离网逆变器,可以带动一台1P的空调(启动功率约5.5kVA),一台12kW的工频离网逆变器,可以带动一台6P的空调(启动功率约33kVA)。逆变器给负载提供启动能量,一部分来自于蓄电池或者光伏组件,超出的部分也是靠逆变器自己(内部的储能元件—电容和电感)来提供。

高频 SPF3000-5000TL HV 工频 SPF 4000-12000T HVM

电容和电感都是一种储能元件,不同的是电容是以电场的形式储存电能,电容的容量越大,储存的电量越多。而电感则是以磁场的形式存储能量,电感器磁芯的磁导率越大,电感量也越大,则能够储存的能量也越多。

电容的原理从其结构便可以看出,如上图,两边各有一块金属板引出两个电极,中间由绝缘物质隔开,在电容两端未施加外部电场的情况下,两个极板上所带的正负电荷处于一种平衡状态。

如上图,当在电容两端施加外电场时,一端极板上开始聚集正电荷,另一端极板则聚集负电荷,随着电容两端的电压不断升高至电源电压,电容充电停止,此时就算断开外电路,电容上的能量也不会消失,原因是正负电荷具有“同性相斥,异性相吸”的特性,两端的电荷相吸引就形成了储存能量的作用。

工频隔离变压器,是指频率为工频(50HZ)的变压器,变压器初级和次级都有电感,与逆变器里面的滤波电感,都可以储存一定的电能。而当电感流过电流时,由于电流会存在磁场,当电流的磁场经过磁芯时,电流磁场会打破“磁畴”的平衡状态,使“磁畴”同时趋向于外部磁场的方向,进而导致磁芯此时会对外表现出磁场。而这个磁芯磁场从无到有的过程,其实就是电感储存磁场的过程。

电感是由漆包线绕制在绝缘骨架或磁芯上形成的元器件。当线圈中有电流通过时,会在周围产生一定的磁场,而当通过的电流含有交流成分时,产生的磁场会不断变化,根据电磁感应原理,变化的磁力线又会在线圈两端产生感应电动势,但此电动势的方向和原来产生的电动势方向相反,并以此来阻碍电流的变化。

由此可以看出,电感的主要作用是阻碍电流的变化。电流增加时,它会阻碍电流的增加,同时通过磁场储存一部分能量;而当电流减小时,它又会阻碍电路中电流的减小,并释放出储存的能量来维持电流。正因为电感有储存能量的特性,所以才有滤波和延迟等功能。

总结:

光伏离网系统,输出功率是由负载决定。当有电动机等感性负载启动时,短时间需要非常大的电流,而这些能量,光伏无法提供,蓄电池也不能提供,锂电池短时间如果过载输出,会引起爆炸。但是,逆变器里的电容、电感、变压器可以储能电量,还可短时间放大几倍输出而不会损坏。

....

沙巴体育

离网逆变器为什么能过载几倍....

相关资讯
老虎机游戏

北极星太阳能光伏网讯:在光伏并网系统中,组件、逆变器、电网构成电气系统。阳光辐射有多大,组件转化太阳能,逆变器就发多大的功率,所以并网逆变器对交流过载没有特别要求,因为逆变器的输出功率基本不会超过组件功率。而在光伏离网系统中,组件、蓄电池、逆变器、负载构成电气系统,逆变器的输出功率,是由负载决定的,有些感性负载,如空调、水泵等,里面的电动机,启动功率是额定功率的3-5倍,所以离网逆变器对过载有特别要求。

从上图看出,采用高频隔离技术的离网逆变器,峰值功率可以达到额定功率的两倍;采用工频隔离技术的离网逆变器,峰值功率可以达到额定功率的三倍。那么,一台3kW的高频离网逆变器,可以带动一台1P的空调(启动功率约5.5kVA),一台12kW的工频离网逆变器,可以带动一台6P的空调(启动功率约33kVA)。逆变器给负载提供启动能量,一部分来自于蓄电池或者光伏组件,超出的部分也是靠逆变器自己(内部的储能元件—电容和电感)来提供。

高频 SPF3000-5000TL HV 工频 SPF 4000-12000T HVM

电容和电感都是一种储能元件,不同的是电容是以电场的形式储存电能,电容的容量越大,储存的电量越多。而电感则是以磁场的形式存储能量,电感器磁芯的磁导率越大,电感量也越大,则能够储存的能量也越多。

电容的原理从其结构便可以看出,如上图,两边各有一块金属板引出两个电极,中间由绝缘物质隔开,在电容两端未施加外部电场的情况下,两个极板上所带的正负电荷处于一种平衡状态。

如上图,当在电容两端施加外电场时,一端极板上开始聚集正电荷,另一端极板则聚集负电荷,随着电容两端的电压不断升高至电源电压,电容充电停止,此时就算断开外电路,电容上的能量也不会消失,原因是正负电荷具有“同性相斥,异性相吸”的特性,两端的电荷相吸引就形成了储存能量的作用。

工频隔离变压器,是指频率为工频(50HZ)的变压器,变压器初级和次级都有电感,与逆变器里面的滤波电感,都可以储存一定的电能。而当电感流过电流时,由于电流会存在磁场,当电流的磁场经过磁芯时,电流磁场会打破“磁畴”的平衡状态,使“磁畴”同时趋向于外部磁场的方向,进而导致磁芯此时会对外表现出磁场。而这个磁芯磁场从无到有的过程,其实就是电感储存磁场的过程。

电感是由漆包线绕制在绝缘骨架或磁芯上形成的元器件。当线圈中有电流通过时,会在周围产生一定的磁场,而当通过的电流含有交流成分时,产生的磁场会不断变化,根据电磁感应原理,变化的磁力线又会在线圈两端产生感应电动势,但此电动势的方向和原来产生的电动势方向相反,并以此来阻碍电流的变化。

由此可以看出,电感的主要作用是阻碍电流的变化。电流增加时,它会阻碍电流的增加,同时通过磁场储存一部分能量;而当电流减小时,它又会阻碍电路中电流的减小,并释放出储存的能量来维持电流。正因为电感有储存能量的特性,所以才有滤波和延迟等功能。

总结:

光伏离网系统,输出功率是由负载决定。当有电动机等感性负载启动时,短时间需要非常大的电流,而这些能量,光伏无法提供,蓄电池也不能提供,锂电池短时间如果过载输出,会引起爆炸。但是,逆变器里的电容、电感、变压器可以储能电量,还可短时间放大几倍输出而不会损坏。

....

澳门皇冠体育

北极星太阳能光伏网讯:在光伏并网系统中,组件、逆变器、电网构成电气系统。阳光辐射有多大,组件转化太阳能,逆变器就发多大的功率,所以并网逆变器对交流过载没有特别要求,因为逆变器的输出功率基本不会超过组件功率。而在光伏离网系统中,组件、蓄电池、逆变器、负载构成电气系统,逆变器的输出功率,是由负载决定的,有些感性负载,如空调、水泵等,里面的电动机,启动功率是额定功率的3-5倍,所以离网逆变器对过载有特别要求。

从上图看出,采用高频隔离技术的离网逆变器,峰值功率可以达到额定功率的两倍;采用工频隔离技术的离网逆变器,峰值功率可以达到额定功率的三倍。那么,一台3kW的高频离网逆变器,可以带动一台1P的空调(启动功率约5.5kVA),一台12kW的工频离网逆变器,可以带动一台6P的空调(启动功率约33kVA)。逆变器给负载提供启动能量,一部分来自于蓄电池或者光伏组件,超出的部分也是靠逆变器自己(内部的储能元件—电容和电感)来提供。

高频 SPF3000-5000TL HV 工频 SPF 4000-12000T HVM

电容和电感都是一种储能元件,不同的是电容是以电场的形式储存电能,电容的容量越大,储存的电量越多。而电感则是以磁场的形式存储能量,电感器磁芯的磁导率越大,电感量也越大,则能够储存的能量也越多。

电容的原理从其结构便可以看出,如上图,两边各有一块金属板引出两个电极,中间由绝缘物质隔开,在电容两端未施加外部电场的情况下,两个极板上所带的正负电荷处于一种平衡状态。

如上图,当在电容两端施加外电场时,一端极板上开始聚集正电荷,另一端极板则聚集负电荷,随着电容两端的电压不断升高至电源电压,电容充电停止,此时就算断开外电路,电容上的能量也不会消失,原因是正负电荷具有“同性相斥,异性相吸”的特性,两端的电荷相吸引就形成了储存能量的作用。

工频隔离变压器,是指频率为工频(50HZ)的变压器,变压器初级和次级都有电感,与逆变器里面的滤波电感,都可以储存一定的电能。而当电感流过电流时,由于电流会存在磁场,当电流的磁场经过磁芯时,电流磁场会打破“磁畴”的平衡状态,使“磁畴”同时趋向于外部磁场的方向,进而导致磁芯此时会对外表现出磁场。而这个磁芯磁场从无到有的过程,其实就是电感储存磁场的过程。

电感是由漆包线绕制在绝缘骨架或磁芯上形成的元器件。当线圈中有电流通过时,会在周围产生一定的磁场,而当通过的电流含有交流成分时,产生的磁场会不断变化,根据电磁感应原理,变化的磁力线又会在线圈两端产生感应电动势,但此电动势的方向和原来产生的电动势方向相反,并以此来阻碍电流的变化。

由此可以看出,电感的主要作用是阻碍电流的变化。电流增加时,它会阻碍电流的增加,同时通过磁场储存一部分能量;而当电流减小时,它又会阻碍电路中电流的减小,并释放出储存的能量来维持电流。正因为电感有储存能量的特性,所以才有滤波和延迟等功能。

总结:

光伏离网系统,输出功率是由负载决定。当有电动机等感性负载启动时,短时间需要非常大的电流,而这些能量,光伏无法提供,蓄电池也不能提供,锂电池短时间如果过载输出,会引起爆炸。但是,逆变器里的电容、电感、变压器可以储能电量,还可短时间放大几倍输出而不会损坏。

....

热门资讯